These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31031558)

  • 1. Constraints on the formation environment of two chondrule-like igneous particles from Comet 81P/Wild 2.
    Gainsforth Z; Butterworth AL; Stodolna J; Westphal AJ; Huss GR; Nagashima K; Ogliore R; Brownlee DE; Joswiak D; Tyliszczak T; Simionovici AS
    Meteorit Planet Sci; 2015 May; 50(5):976-1004. PubMed ID: 31031558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase.
    Tenner TJ; Nakashima D; Ushikubo T; Tomioka N; Kimura M; Weisberg MK; Kita NT
    Geochim Cosmochim Acta; 2019 Sep; 260():133-160. PubMed ID: 32255837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes and mineral chemistry.
    Defouilloy C; Nakashima D; Joswiak DJ; Brownlee DE; Tenner TJ; Kita NT
    Earth Planet Sci Lett; 2017 May; 465():145-154. PubMed ID: 30705461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of chondrules: petrologic tests of the shock wave model.
    Connolly Jr HC ; Love SG
    Science; 1998 Apr; 280(5360):62-7. PubMed ID: 9525858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions.
    Krot AN; Yurimoto H; Hutcheon ID; MacPherson GJ
    Nature; 2005 Apr; 434(7036):998-1001. PubMed ID: 15846340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chondrulelike objects in short-period comet 81P/Wild 2.
    Nakamura T; Noguchi T; Tsuchiyama A; Ushikubo T; Kita NT; Valley JW; Zolensky ME; Kakazu Y; Sakamoto K; Mashio E; Uesugi K; Nakano T
    Science; 2008 Sep; 321(5896):1664-7. PubMed ID: 18801994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helium and neon abundances and compositions in cometary matter.
    Marty B; Palma RL; Pepin RO; Zimmermann L; Schlutter DJ; Burnard PG; Westphal AJ; Snead CJ; Bajt S; Becker RH; Simones JE
    Science; 2008 Jan; 319(5859):75-8. PubMed ID: 18174437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Q-gases in a late-forming refractory interplanetary dust particle: A link to comet Wild 2.
    Ogliore RC; Palma RL; Stodolna J; Nagashima K; Pepin RO; Schlutter DJ; Gainsforth Z; Westphal AJ; Huss GR
    Geochim Cosmochim Acta; 2020 Feb; 271():116-131. PubMed ID: 32214433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite.
    Hertwig AT; Defouilloy C; Kita NT
    Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.
    Ishii HA; Bradley JP; Dai ZR; Chi M; Kearsley AT; Burchell MJ; Browning ND; Molster F
    Science; 2008 Jan; 319(5862):447-50. PubMed ID: 18218892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft.
    Sandford SA; Aléon J; Alexander CM; Araki T; Bajt S; Baratta GA; Borg J; Bradley JP; Brownlee DE; Brucato JR; Burchell MJ; Busemann H; Butterworth A; Clemett SJ; Cody G; Colangeli L; Cooper G; D'Hendecourt L; Djouadi Z; Dworkin JP; Ferrini G; Fleckenstein H; Flynn GJ; Franchi IA; Fries M; Gilles MK; Glavin DP; Gounelle M; Grossemy F; Jacobsen C; Keller LP; Kilcoyne AL; Leitner J; Matrajt G; Meibom A; Mennella V; Mostefaoui S; Nittler LR; Palumbo ME; Papanastassiou DA; Robert F; Rotundi A; Snead CJ; Spencer MK; Stadermann FJ; Steele A; Stephan T; Tsou P; Tyliszczak T; Westphal AJ; Wirick S; Wopenka B; Yabuta H; Zare RN; Zolensky ME
    Science; 2006 Dec; 314(5806):1720-4. PubMed ID: 17170291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions.
    Bizzarro M; Baker JA; Haack H
    Nature; 2004 Sep; 431(7006):275-8. PubMed ID: 15372023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New constraints from
    Siron G; Fukuda K; Kimura M; Kita NT
    Geochim Cosmochim Acta; 2021 Jan; 293():103-126. PubMed ID: 35001941
    [No Abstract]   [Full Text] [Related]  

  • 14. The Cometary and Interstellar Dust Analyzer at comet 81P/Wild 2.
    Kissel J; Krueger FR; Silén J; Clark BC
    Science; 2004 Jun; 304(5678):1774-6. PubMed ID: 15205526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cometary dust: the diversity of primitive refractory grains.
    Wooden DH; Ishii HA; Zolensky ME
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2097):. PubMed ID: 28554979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraints on the formation age of cometary material from the NASA Stardust mission.
    Matzel JE; Ishii HA; Joswiak D; Hutcheon ID; Bradley JP; Brownlee D; Weber PK; Teslich N; Matrajt G; McKeegan KD; MacPherson GJ
    Science; 2010 Apr; 328(5977):483-6. PubMed ID: 20185683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust.
    Keller LP; Bajt S; Baratta GA; Borg J; Bradley JP; Brownlee DE; Busemann H; Brucato JR; Burchell M; Colangeli L; d'Hendecourt L; Djouadi Z; Ferrini G; Flynn G; Franchi IA; Fries M; Grady MM; Graham GA; Grossemy F; Kearsley A; Matrajt G; Nakamura-Messenger K; Mennella V; Nittler L; Palumbo ME; Stadermann FJ; Tsou P; Rotundi A; Sandford SA; Snead C; Steele A; Wooden D; Zolensky M
    Science; 2006 Dec; 314(5806):1728-31. PubMed ID: 17170293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of GEMS in Interplanetary Dust Particles and GEMS-like Objects in a Stardust Impact Track in Aerogel.
    Ishii HA
    Meteorit Planet Sci; 2019 Jan; 54(1):202-219. PubMed ID: 30713419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrule-like objects and Ca-Al-rich inclusions in Ryugu may potentially be the oldest Solar System materials.
    Nakashima D; Nakamura T; Zhang M; Kita NT; Mikouchi T; Yoshida H; Enokido Y; Morita T; Kikuiri M; Amano K; Kagawa E; Yada T; Nishimura M; Nakato A; Miyazaki A; Yogata K; Abe M; Okada T; Usui T; Yoshikawa M; Saiki T; Tanaka S; Nakazawa S; Terui F; Yurimoto H; Noguchi T; Yabuta H; Naraoka H; Okazaki R; Sakamoto K; Watanabe SI; Tachibana S; Tsuda Y
    Nat Commun; 2023 Feb; 14(1):532. PubMed ID: 36797235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic heating in the early solar nebula and the formation of chondrules.
    Eisenhour DD; Daulton TL; Buseck PR
    Science; 1994 Aug; 265(5175):1067-70. PubMed ID: 17832896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.