These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 31031793)
41. Sex-Specific Differences in the Physiological and Biochemical Performance of Arbuscular Mycorrhizal Fungi-Inoculated Mulberry Clones Under Salinity Stress. Wang YH; Zhang NL; Wang MQ; He XB; Lv ZQ; Wei J; Su X; Wu AP; Li Y Front Plant Sci; 2021; 12():614162. PubMed ID: 33815436 [TBL] [Abstract][Full Text] [Related]
42. Arbuscular Mycorrhiza-Mediated Regulation of Polyamines and Aquaporins During Abiotic Stress: Deep Insights on the Recondite Players. Sharma K; Gupta S; Thokchom SD; Jangir P; Kapoor R Front Plant Sci; 2021; 12():642101. PubMed ID: 34220878 [TBL] [Abstract][Full Text] [Related]
43. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Daei G; Ardekani MR; Rejali F; Teimuri S; Miransari M J Plant Physiol; 2009 Apr; 166(6):617-25. PubMed ID: 19100656 [TBL] [Abstract][Full Text] [Related]
44. Arbuscular Mycorrhizal Fungi Enhanced Drought Resistance of Han Y; Lou X; Zhang W; Xu T; Tang M Microbiol Spectr; 2022 Jun; 10(3):e0245621. PubMed ID: 35612316 [TBL] [Abstract][Full Text] [Related]
45. Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed ( Romero-Munar A; Baraza E; Gulías J; Cabot C Front Plant Sci; 2019; 10():843. PubMed ID: 31396243 [TBL] [Abstract][Full Text] [Related]
46. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. Wang Y; Wang M; Li Y; Wu A; Huang J PLoS One; 2018; 13(4):e0196408. PubMed ID: 29698448 [TBL] [Abstract][Full Text] [Related]
47. Insights into the molecular aspects of salt stress tolerance in mycorrhizal plants. Saxena B; Sharma K; Kapoor R; Wu QS; Giri B World J Microbiol Biotechnol; 2022 Nov; 38(12):253. PubMed ID: 36316429 [TBL] [Abstract][Full Text] [Related]
48. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Pollastri S; Savvides A; Pesando M; Lumini E; Volpe MG; Ozudogru EA; Faccio A; De Cunzo F; Michelozzi M; Lambardi M; Fotopoulos V; Loreto F; Centritto M; Balestrini R Planta; 2018 Mar; 247(3):573-585. PubMed ID: 29124326 [TBL] [Abstract][Full Text] [Related]
49. Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Giri B; Kapoor R; Mukerji KG Microb Ecol; 2007 Nov; 54(4):753-60. PubMed ID: 17372663 [TBL] [Abstract][Full Text] [Related]
50. Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses. Jajoo A; Mathur S Physiol Mol Biol Plants; 2021 Nov; 27(11):2589-2603. PubMed ID: 34924713 [TBL] [Abstract][Full Text] [Related]
51. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Sun W; Shahrajabian MH Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687348 [TBL] [Abstract][Full Text] [Related]
52. Arbuscular Mycorrhizas Regulate Photosynthetic Capacity and Antioxidant Defense Systems to Mediate Salt Tolerance in Maize. Wang H; Liang L; Liu B; Huang D; Liu S; Liu R; Siddique KHM; Chen Y Plants (Basel); 2020 Oct; 9(11):. PubMed ID: 33114367 [TBL] [Abstract][Full Text] [Related]
53. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Pedranzani H; Rodríguez-Rivera M; Gutiérrez M; Porcel R; Hause B; Ruiz-Lozano JM Mycorrhiza; 2016 Feb; 26(2):141-52. PubMed ID: 26184604 [TBL] [Abstract][Full Text] [Related]
54. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Wang S; Ren Y; Han L; Nie Y; Zhang S; Xie X; Hu W; Chen H; Tang M Microbiol Spectr; 2023 Mar; 11(2):e0438122. PubMed ID: 36927000 [TBL] [Abstract][Full Text] [Related]
55. Strigolactones: A promising tool for nutrient acquisition through arbuscular mycorrhizal fungi symbiosis and abiotic stress tolerance. Naseer MA; Zhang ZQ; Mukhtar A; Asad MS; Wu HY; Yang H; Zhou XB Plant Physiol Biochem; 2024 Oct; 215():109057. PubMed ID: 39173365 [TBL] [Abstract][Full Text] [Related]
56. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. Quiroga G; Erice G; Aroca R; Chaumont F; Ruiz-Lozano JM Front Plant Sci; 2017; 8():1056. PubMed ID: 28674550 [TBL] [Abstract][Full Text] [Related]
57. Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. Bahadur A; Batool A; Nasir F; Jiang S; Mingsen Q; Zhang Q; Pan J; Liu Y; Feng H Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31461957 [TBL] [Abstract][Full Text] [Related]
58. Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum. Wang F; Sun Y; Shi Z Microorganisms; 2019 Aug; 7(9):. PubMed ID: 31450847 [TBL] [Abstract][Full Text] [Related]
59. The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress. Liu Y; Lu J; Cui L; Tang Z; Ci D; Zou X; Zhang X; Yu X; Wang Y; Si T BMC Plant Biol; 2023 Jan; 23(1):36. PubMed ID: 36642709 [TBL] [Abstract][Full Text] [Related]
60. Sex-specific photosynthetic capacity and Na Wu N; Li Z; Wu F; Zhen L Front Plant Sci; 2022; 13():1066954. PubMed ID: 36518519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]