These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31032019)

  • 1. A ctenophore (comb jelly) employs vortex rebound dynamics and outperforms other gelatinous swimmers.
    Gemmell BJ; Colin SP; Costello JH; Sutherland KR
    R Soc Open Sci; 2019 Mar; 6(3):181615. PubMed ID: 31032019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance.
    Gemmell BJ; Du Clos KT; Colin SP; Sutherland KR; Costello JH
    Proc Biol Sci; 2021 Jan; 288(1942):20202494. PubMed ID: 33402068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring vortex enhancement and manipulation mechanisms in jellyfish that contributes to energetically efficient propulsion.
    Gemmell BJ; Costello JH; Colin SP
    Commun Integr Biol; 2014; 7():e29014. PubMed ID: 25346796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans.
    Gemmell BJ; Costello JH; Colin SP; Stewart CJ; Dabiri JO; Tafti D; Priya S
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17904-9. PubMed ID: 24101461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hydrodynamics of Jellyfish Swimming.
    Costello JH; Colin SP; Dabiri JO; Gemmell BJ; Lucas KN; Sutherland KR
    Ann Rev Mar Sci; 2021 Jan; 13():375-396. PubMed ID: 32600216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses.
    Dabiri JO; Colin SP; Costello JH; Gharib M
    J Exp Biol; 2005 Apr; 208(Pt 7):1257-65. PubMed ID: 15781886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 May; 212(Pt 10):1506-18. PubMed ID: 19411544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow disturbances generated by feeding and swimming zooplankton.
    Kiørboe T; Jiang H; Gonçalves RJ; Nielsen LT; Wadhwa N
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11738-43. PubMed ID: 25071196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish
    Neil TR; Askew GN
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.
    Bartol IK; Krueger PS; Jastrebsky RA; Williams S; Thompson JT
    J Exp Biol; 2016 Feb; 219(Pt 3):392-403. PubMed ID: 26643088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metachronal Swimming of Mantis Shrimp: Kinematics and Interpleopod Vortex Interactions.
    Garayev K; Murphy DW
    Integr Comp Biol; 2021 Nov; 61(5):1631-1643. PubMed ID: 33997904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic propulsive transitions by Sarsia tubulosa medusae.
    Katija K; Colin SP; Costello JH; Jiang H
    J Exp Biol; 2015 Aug; 218(Pt 15):2333-43. PubMed ID: 26026040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex re-capturing and kinematics in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2011 Oct; 30(5):998-1007. PubMed ID: 21684028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake.
    Dabiri JO; Colin SP; Costello JH
    J Exp Biol; 2006 Jun; 209(Pt 11):2025-33. PubMed ID: 16709905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of vortex rings for manoeuvrability.
    Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA
    J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of optimized anguilliform swimming.
    Kern S; Koumoutsakos P
    J Exp Biol; 2006 Dec; 209(Pt 24):4841-57. PubMed ID: 17142673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly.
    Villanueva A; Vlachos P; Priya S
    PLoS One; 2014; 9(6):e98310. PubMed ID: 24905025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.