These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31032177)

  • 1. Maskless Spatioselective Functionalization of Silicon Nanowires.
    Veerbeek J; Huskens J
    ChemNanoMat; 2018 Aug; 4(8):874-881. PubMed ID: 31032177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Functionalization with PNA of Silicon Nanowires on Silicon Oxide Substrates.
    Veerbeek J; Steen R; Vijselaar W; Rurup WF; Korom S; Rozzi A; Corradini R; Segerink L; Huskens J
    Langmuir; 2018 Sep; 34(38):11395-11404. PubMed ID: 30179484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Surface Properties of Light-Trapping Si Nanowires Using Synergetic Effects of Metal-Assisted and Anisotropic Chemical Etchings.
    Jeong Y; Hong C; Jung YH; Akter R; Yoon H; Yoon I
    Sci Rep; 2019 Nov; 9(1):15914. PubMed ID: 31685903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatioselective Deposition of Passivating and Electrocatalytic Layers on Silicon Nanowire Arrays.
    Wendisch FJ; Abazari M; Werner V; Barb H; Rey M; Goerlitzer ESA; Vogel N; Mahdavi H; Bourret GR
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52581-52587. PubMed ID: 33169967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.
    Ouertani R; Hamdi A; Amri C; Khalifa M; Ezzaouia H
    Nanoscale Res Lett; 2014; 9(1):574. PubMed ID: 25349554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.
    Veerbeek J; Firet NJ; Vijselaar W; Elbersen R; Gardeniers H; Huskens J
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):413-421. PubMed ID: 27935276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographically Determined Etching and Its Relevance to the Metal-Assisted Catalytic Etching (MACE) of Silicon Powders.
    Kolasinski KW; Unger BA; Ernst AT; Aindow M
    Front Chem; 2018; 6():651. PubMed ID: 30701171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Anodic and Metal-Assisted Chemical Etching Method Enabling Fabrication of Silicon Carbide Nanowires.
    Chen Y; Zhang C; Li L; Zhou S; Chen X; Gao J; Zhao N; Wong CP
    Small; 2019 Feb; 15(7):e1803898. PubMed ID: 30667586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the Nature of Etched Si Nanostructures: High- versus Low-Load Metal-Assisted Catalytic Etching (MACE) of Si Powders.
    Tamarov K; Swanson JD; Unger BA; Kolasinski KW; Ernst AT; Aindow M; Lehto VP; Riikonen J
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4787-4796. PubMed ID: 31888334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of etching kinetics and directional transition of nanowires formed on pyramidal microtextures.
    Chen CY; Li L; Wong CP
    Chem Asian J; 2014 Jan; 9(1):93-9. PubMed ID: 24127312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching.
    Chen Y; Li L; Zhang C; Tuan CC; Chen X; Gao J; Wong CP
    Nano Lett; 2017 Feb; 17(2):1014-1019. PubMed ID: 28103049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Photoluminescence of R6G Dyes from Metal Decorated Silicon Nanowires Fabricated through Metal Assisted Chemical Etching.
    Kochylas I; Dimitriou A; Apostolaki MA; Skoulikidou MC; Likodimos V; Gardelis S; Papanikolaou N
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.
    Hazut O; Agarwala A; Subramani T; Waichman S; Yerushalmi R
    J Vis Exp; 2013 Dec; (82):50770. PubMed ID: 24326774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-(111) surface silicon nanowires: selective functionalization for biosensing applications.
    Masood MN; Chen S; Carlen ET; van den Berg A
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3422-8. PubMed ID: 21090766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upgraded silicon nanowires by metal-assisted etching of metallurgical silicon: a new route to nanostructured solar-grade silicon.
    Li X; Xiao Y; Bang JH; Lausch D; Meyer S; Miclea PT; Jung JY; Schweizer SL; Lee JH; Wehrspohn RB
    Adv Mater; 2013 Jun; 25(23):3187-91. PubMed ID: 23637063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review.
    Leonardi AA; Faro MJL; Irrera A
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33546133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.
    Rey BM; Elnathan R; Ditcovski R; Geisel K; Zanini M; Fernandez-Rodriguez MA; Naik VV; Frutiger A; Richtering W; Ellenbogen T; Voelcker NH; Isa L
    Nano Lett; 2016 Jan; 16(1):157-63. PubMed ID: 26672801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver-assisted chemical etching on silicon with polyvinylpyrrolidone-mediated formation of silver dendrites.
    Chen CY; Hsiao PH
    Chemphyschem; 2015 Feb; 16(3):540-5. PubMed ID: 25521287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature.
    Li S; Ma W; Zhou Y; Chen X; Xiao Y; Ma M; Zhu W; Wei F
    Nanoscale Res Lett; 2014; 9(1):196. PubMed ID: 24910568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, morphology, and photoluminescence of porous Si nanowires: effect of different chemical treatments.
    Leontis I; Othonos A; Nassiopoulou AG
    Nanoscale Res Lett; 2013 Sep; 8(1):383. PubMed ID: 24025542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.