These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31032375)
1. Quantifying the Sustainability of Water Availability for the Water-Food-Energy-Ecosystem Nexus in the Niger River Basin. Yang J; Yang YCE; Khan HF; Xie H; Ringler C; Ogilvie A; Seidou O; Djibo AG; van Weert F; Tharme R Earths Future; 2018 Sep; 6(9):1292-1310. PubMed ID: 31032375 [TBL] [Abstract][Full Text] [Related]
2. The water-energy-food-ecosystem nexus in the Danube River Basin: Exploring scenarios and implications of maize irrigation. Probst E; Fader M; Mauser W Sci Total Environ; 2024 Mar; 914():169405. PubMed ID: 38123083 [TBL] [Abstract][Full Text] [Related]
3. An approach to complex transboundary water management in Central Asia: Evolutionary cooperation in transboundary basins under the water-energy-food-ecosystem nexus. Guo L; Wu Y; Huang F; Jing P; Huang Y J Environ Manage; 2024 Feb; 351():119940. PubMed ID: 38169259 [TBL] [Abstract][Full Text] [Related]
4. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Do P; Tian F; Zhu T; Zohidov B; Ni G; Lu H; Liu H Sci Total Environ; 2020 Aug; 728():137996. PubMed ID: 32570321 [TBL] [Abstract][Full Text] [Related]
5. Transboundary river basins: Scenarios of hydropower development and operation under extreme climate conditions. Ly K; Metternicht G; Marshall L Sci Total Environ; 2022 Jan; 803():149828. PubMed ID: 34500272 [TBL] [Abstract][Full Text] [Related]
6. Water-energy-ecosystem nexus modeling using multi-objective, non-linear programming in a regulated river: Exploring tradeoffs among environmental flows, cascaded small hydropower, and inter-basin water diversion projects. Yin D; Li X; Wang F; Liu Y; Croke BFW; Jakeman AJ J Environ Manage; 2022 Apr; 308():114582. PubMed ID: 35123200 [TBL] [Abstract][Full Text] [Related]
7. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the Water-Energy-Food nexus: The Blue Nile Basin. Basheer M; Wheeler KG; Ribbe L; Majdalawi M; Abdo G; Zagona EA Sci Total Environ; 2018 Jul; 630():1309-1323. PubMed ID: 29554751 [TBL] [Abstract][Full Text] [Related]
8. Hydro-dam - A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake. Lin Z; Qi J Environ Res; 2017 Oct; 158():24-32. PubMed ID: 28595042 [TBL] [Abstract][Full Text] [Related]
9. Spatio-Temporal Characteristics of Trade-Offs and Synergies in Ecosystem Services at Watershed and Landscape Scales: A Case Analysis of the Yellow River Basin (Henan Section). Niu H; Liu M; Xiao D; Zhao X; An R; Fan L Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497847 [TBL] [Abstract][Full Text] [Related]
10. Development and synergetic evolution of the water-energy-food nexus system in the Yellow River Basin. Liu S; Zhao L Environ Sci Pollut Res Int; 2022 Sep; 29(43):65549-65564. PubMed ID: 35488151 [TBL] [Abstract][Full Text] [Related]
11. Modelling the availability of water, energy, and food resources in transboundary river basins to achieve Sustainable Development Goals 2, 6, and 7. Lodge JW; Dansie AP; Dang NM; Johnson F Sci Total Environ; 2024 Nov; 949():175186. PubMed ID: 39097029 [TBL] [Abstract][Full Text] [Related]
12. Using remote sensing and GIS in the analysis of ecosystem decline along the River Niger Basin: the case of Mali and Niger. Twumasi YA; Merem EC Int J Environ Res Public Health; 2007 Jun; 4(2):173-84. PubMed ID: 17617682 [TBL] [Abstract][Full Text] [Related]
13. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review]. Yang K; Deng X; Li XL; Wen P Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1359-67. PubMed ID: 21812317 [TBL] [Abstract][Full Text] [Related]
14. Water diplomacy and nexus governance in a transboundary context: In the search for complementarities. Salmoral G; Schaap NCE; Walschebauer J; Alhajaj A Sci Total Environ; 2019 Nov; 690():85-96. PubMed ID: 31284199 [TBL] [Abstract][Full Text] [Related]
15. Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal River Basin of West Africa. Merem EC; Twumasi YA Int J Environ Res Public Health; 2008 Dec; 5(5):464-76. PubMed ID: 19151444 [TBL] [Abstract][Full Text] [Related]
16. Hydropower and sustainability: resilience and vulnerability in China's powersheds. McNally A; Magee D; Wolf AT J Environ Manage; 2009 Jul; 90 Suppl 3():S286-93. PubMed ID: 19013007 [TBL] [Abstract][Full Text] [Related]
17. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran. Bakhshianlamouki E; Masia S; Karimi P; van der Zaag P; Sušnik J Sci Total Environ; 2020 Mar; 708():134874. PubMed ID: 31796284 [TBL] [Abstract][Full Text] [Related]
18. Revealing the water-energy-food nexus in the Upper Yellow River Basin through multi-objective optimization for reservoir system. Si Y; Li X; Yin D; Li T; Cai X; Wei J; Wang G Sci Total Environ; 2019 Sep; 682():1-18. PubMed ID: 31112814 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the complex interconnections between food-energy-water nexus sustainability and the supply-demand of related ecosystem services. Wang K; Li X; Lyu X; Dang D; Cao W; Du Y J Environ Manage; 2024 Nov; 370():122532. PubMed ID: 39303587 [TBL] [Abstract][Full Text] [Related]
20. Assessing Transboundary Impacts of Energy-Driven Water Footprint on Scarce Water Resources in China: Catchments under Stress and Mitigation Options. Liu X; Du H; Zhang X; Feng K; Zhao X; Zhong H; Zhang N; Chen Z Environ Sci Technol; 2023 Jul; 57(26):9639-9652. PubMed ID: 37344372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]