These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 31032402)

  • 1. A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors.
    Yue K; Liu Y; Lake RK; Parker AC
    Sci Adv; 2019 Apr; 5(4):eaau8170. PubMed ID: 31032402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid CMOS-Memristor Neuromorphic Synapse.
    Azghadi MR; Linares-Barranco B; Abbott D; Leong PH
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):434-445. PubMed ID: 28026782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural plasticity on an accelerated analog neuromorphic hardware system.
    Billaudelle S; Cramer B; Petrovici MA; Schreiber K; Kappel D; Schemmel J; Meier K
    Neural Netw; 2021 Jan; 133():11-20. PubMed ID: 33091719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System.
    Friedmann S; Schemmel J; Grubl A; Hartel A; Hock M; Meier K
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):128-142. PubMed ID: 28113678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.
    Mostafa H; Khiat A; Serb A; Mayr CG; Indiveri G; Prodromakis T
    Front Neurosci; 2015; 9():357. PubMed ID: 26483629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
    Rahimi Azghadi M; Iannella N; Al-Sarawi S; Abbott D
    PLoS One; 2014; 9(2):e88326. PubMed ID: 24551089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid CMOS-Memristor synapse circuits for implementing Ca ion-based plasticity model.
    Lim JG; Park SJ; Lee SM; Jeong Y; Kim J; Lee S; Park J; Hwang GW; Lee KS; Park S; Jang HJ; Ju BK; Park JK; Kim I
    Sci Rep; 2024 Aug; 14(1):17915. PubMed ID: 39095461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization.
    Cassidy AS; Georgiou J; Andreou AG
    Neural Netw; 2013 Sep; 45():4-26. PubMed ID: 23886551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations.
    Camuñas-Mesa LA; Linares-Barranco B; Serrano-Gotarredona T
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Adaptive STDP Learning Rule for Neuromorphic Systems.
    Gautam A; Kohno T
    Front Neurosci; 2021; 15():741116. PubMed ID: 34630026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of nanoscale memristor synapses in neuromorphic computing architectures.
    Indiveri G; Linares-Barranco B; Legenstein R; Deligeorgis G; Prodromakis T
    Nanotechnology; 2013 Sep; 24(38):384010. PubMed ID: 23999381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition.
    Xue S; Wang S; Wu T; Di Z; Xu N; Sun Y; Zeng C; Ma S; Zhou P
    Sci Bull (Beijing); 2023 Oct; 68(20):2336-2343. PubMed ID: 37714804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.