These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31032833)

  • 1. Direct evidence for the influence of lithium ion vacancies on polaron transport in nanoscale LiFePO
    Banday A; Ali M; Pandey R; Murugavel S
    Phys Chem Chem Phys; 2019 May; 21(19):9858-9864. PubMed ID: 31032833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle size dependent confinement and lattice strain effects in LiFePO4.
    Shahid R; Murugavel S
    Phys Chem Chem Phys; 2013 Nov; 15(43):18809-14. PubMed ID: 24091905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the influence of polaron delocalization on the electrical transport in LiNi
    Feng T; Li L; Shi Q; Dong S; Li B; Li K; Li G
    Phys Chem Chem Phys; 2020 Jan; 22(4):2054-2060. PubMed ID: 31904064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of crystallite size on the phase transition behavior of heterosite FePO
    Banday A; Shahid R; Meena SS; Yusuf SM; Murugavel S
    Phys Chem Chem Phys; 2020 Jul; 22(27):15478-15487. PubMed ID: 32602510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile Small Polarons Qualitatively Explain Conductivity in Lithium Titanium Oxide Battery Electrodes.
    Kick M; Grosu C; Schuderer M; Scheurer C; Oberhofer H
    J Phys Chem Lett; 2020 Apr; 11(7):2535-2540. PubMed ID: 32162917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal alignment of a LiFePO
    Kim C; Yang Y; Ha D; Kim DH; Kim H
    RSC Adv; 2019 Oct; 9(55):31936-31942. PubMed ID: 35530771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured materials for lithium-ion batteries: surface conductivity vs. bulk ion/electron transport.
    Ellis B; Subramanya Herle P; Rho YH; Nazar LF; Dunlap R; Perry LK; Ryan DH
    Faraday Discuss; 2007; 134():119-41; discussion 215-33, 415-9. PubMed ID: 17326565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion mechanism of Na ion-polaron complex in potential cathode materials NaVOPO
    Luong HD; Pham TD; Morikawa Y; Shibutani Y; Dinh VA
    Phys Chem Chem Phys; 2018 Sep; 20(36):23625-23634. PubMed ID: 30191242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of adsorbed polar molecules on the electronic transport in a composite material Li(1.1)V3O8-PMMA for lithium batteries.
    Badot JC; Ligneel E; Dubrunfaut O; Gaubicher J; Guyomard D; Lestriez B
    Phys Chem Chem Phys; 2012 Jul; 14(26):9500-10. PubMed ID: 22652605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning a small electron polaron in FePO
    Chen T; Ye Y; Wang Y; Fang C; Lin W; Jiang Y; Xu B; Ouyang C; Zheng J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8734-8742. PubMed ID: 36896849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminium-doped LiFePO4 single crystals. Part II. Ionic conductivity, diffusivity and defect model.
    Amin R; Lin C; Maier J
    Phys Chem Chem Phys; 2008 Jun; 10(24):3524-9. PubMed ID: 18548158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the Rate Capability of LiFePO4 by a New Highly Graphitic Carbon-Coating Method.
    Song J; Sun B; Liu H; Ma Z; Chen Z; Shao G; Wang G
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15225-31. PubMed ID: 27238368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Modification of the LiFePO
    Tron A; Jo YN; Oh SH; Park YD; Mun J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polaronic Conductivity in Iron Phosphate Glasses Containing B
    Pavić L; Fazinić S; Ertap H; Karabulut M; Moguš-Milanković A; Šantić A
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.
    Patel SN; Javier AE; Balsara NP
    ACS Nano; 2013 Jul; 7(7):6056-68. PubMed ID: 23789816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacity Fading Mechanism of the Commercial 18650 LiFePO
    Liu Q; Liu Y; Yang F; He H; Xiao X; Ren Y; Lu W; Stach E; Xie J
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4622-4629. PubMed ID: 29309119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.
    Kim BS; Lee MS; Park KY; Kang K
    Chem Asian J; 2016 Apr; 11(8):1288-92. PubMed ID: 26928985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.
    Ha J; Park SK; Yu SH; Jin A; Jang B; Bong S; Kim I; Sung YE; Piao Y
    Nanoscale; 2013 Sep; 5(18):8647-55. PubMed ID: 23897269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and thermodynamic properties of native point defects in V
    Ngamwongwan L; Fongkaew I; Jungthawan S; Hirunsit P; Limpijumnong S; Suthirakun S
    Phys Chem Chem Phys; 2021 May; 23(19):11374-11387. PubMed ID: 33711089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.