These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31033059)

  • 1. Integrated Theoretical and Empirical Studies for Probing Substrate-Framework Interactions in Hierarchical Catalysts.
    Chapman S; O'Malley AJ; Miletto I; Carravetta M; Cox P; Gianotti E; Marchese L; Parker SF; Raja R
    Chemistry; 2019 Jul; 25(42):9938-9947. PubMed ID: 31033059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPO-34 with Tunable Acid Properties.
    Miletto I; Paul G; Chapman S; Gatti G; Marchese L; Raja R; Gianotti E
    Chemistry; 2017 Jul; 23(41):9952-9961. PubMed ID: 28574168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Vibrational Spectroscopic Characterization of Nylon-6 Precursors for Precise Tracking of the Beckmann Rearrangement.
    Chapman S; O'Malley AJ; Parker SF; Raja R
    Chemphyschem; 2018 Sep; ():. PubMed ID: 30253015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic PdAu Catalysts within Hierarchically Porous Architectures for Aerobic Oxidation of Benzyl Alcohol.
    Verma P; Potter ME; Oakley AE; Mhembere PM; Raja R
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinpointing basic sites formed upon incorporation of iron in hierarchical SAPO-11 using catalytic model reactions.
    Ali D; Li Z; Azim MM; Lein HL; Mathisen K
    Dalton Trans; 2022 Oct; 51(40):15251-15262. PubMed ID: 36124917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical SAPO-34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates.
    Miletto I; Ivaldi C; Paul G; Chapman S; Marchese L; Raja R; Gianotti E
    ChemistryOpen; 2018 Apr; 7(4):297-301. PubMed ID: 29686961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the Beckmann rearrangement reaction catalyzed by porous solids: MAS NMR and theoretical calculations.
    Lezcano-González I; Boronat M; Blasco T
    Solid State Nucl Magn Reson; 2009 Apr; 35(2):120-9. PubMed ID: 19286355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Design Rationale of a High-Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity.
    Chapman S; Carravetta M; Miletto I; Doherty CM; Dixon H; Taylor JD; Gianotti E; Yu J; Raja R
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19561-19569. PubMed ID: 32648629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic study on the active site of a SiO2 supported niobia catalyst used for the gas-phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam.
    Maronna MM; Kruissink EC; Parton RF; Soulimani F; Weckhuysen BM; Hoelderich WF
    Phys Chem Chem Phys; 2016 Aug; 18(32):22636-46. PubMed ID: 27477867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ Generation of Cyclohexanone Drives Electrocatalytic Upgrading of Phenol to Nylon-6 Precursor.
    Jia S; Wang R; Jin X; Liu H; Wu L; Song X; Zhang L; Ma X; Tan X; Sun X; Han B
    Angew Chem Int Ed Engl; 2024 Nov; 63(46):e202410972. PubMed ID: 39115031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the large pore aluminophosphate STA-1 and its application as a catalyst for the Beckmann rearrangement of cyclohexanone oxime.
    González-Camuñas N; Cantín Á; Dawson DM; Lozinska MM; Martínez-Triguero J; Mattock J; Cox PA; Ashbrook SE; Wright PA; Rey F
    J Mater Chem A Mater; 2024 Jun; 12(25):15398-15411. PubMed ID: 38933527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy.
    Fernandez AB; Lezcano-Gonzalez I; Boronat M; Blasco T; Corma A
    Phys Chem Chem Phys; 2009 Jul; 11(25):5134-41. PubMed ID: 19562146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the Microenvironment of Silanols in Pure-Silicon Zeolites for Boosting Vapor-phase Beckmann Rearrangement of Cyclohexanone Oxime.
    Zhang P; Wang X; Yi X; Ou Q; Xia C; Peng X; Zhang X; Zheng A; Luo Y; Shu X
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40478-40487. PubMed ID: 37591494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime.
    Li WC; Lu AH; Palkovits R; Schmidt W; Spliethoff B; Schüth F
    J Am Chem Soc; 2005 Sep; 127(36):12595-600. PubMed ID: 16144407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dopant substitution mechanism on catalytic properties within hierarchical architectures.
    Newland SH; Sinkler W; Mezza T; Bare SR; Raja R
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160095. PubMed ID: 27493563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: an embedded ONIOM study.
    Sirijaraensre J; Limtrakul J
    Phys Chem Chem Phys; 2009 Jan; 11(3):578-85. PubMed ID: 19283276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct hydrothermal synthesis of hierarchically porous siliceous zeolite by using alkoxysilylated nonionic surfactant.
    Mukti RR; Hirahara H; Sugawara A; Shimojima A; Okubo T
    Langmuir; 2010 Feb; 26(4):2731-5. PubMed ID: 19817366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance.
    Sun Q; Wang N; Xi D; Yang M; Yu J
    Chem Commun (Camb); 2014 Jun; 50(49):6502-5. PubMed ID: 24817555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst.
    Zachariou A; Hawkins AP; Howe RF; Skakle JMS; Barrow N; Collier P; Nye DW; Smith RI; Stenning GBG; Parker SF; Lennon D
    ACS Phys Chem Au; 2023 Jan; 3(1):74-83. PubMed ID: 36718264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of water with (silico)aluminophosphate zeotypes: a comparative investigation using dispersion-corrected DFT.
    Fischer M
    Phys Chem Chem Phys; 2016 Jun; 18(23):15738-50. PubMed ID: 27225530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.