BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 31033146)

  • 1. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles.
    Hodge J; Quint C
    J Biomed Mater Res A; 2019 Sep; 107(9):1954-1964. PubMed ID: 31033146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber.
    Hodge JG; Quint C
    J Biomater Appl; 2022 Jul; 37(1):77-88. PubMed ID: 35317691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K; Xu M; Zhu M; Su H; Wang H; Kong D; Wang L
    J Biomed Mater Res A; 2013 Dec; 101(12):3474-81. PubMed ID: 23606405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.
    Baker BM; Gee AO; Metter RB; Nathan AS; Marklein RA; Burdick JA; Mauck RL
    Biomaterials; 2008 May; 29(15):2348-58. PubMed ID: 18313138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Randomly Electrospun Poly(lactic-co-glycolic acid):Poly(ethylene oxide) (PLGA:PEO) Fibrous Scaffolds Enhancing Myoblast Differentiation and Alignment.
    Evrova O; Hosseini V; Milleret V; Palazzolo G; Zenobi-Wong M; Sulser T; Buschmann J; Eberli D
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31574-31586. PubMed ID: 27726370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of multilayered electrospun poly(lactic-co-glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation.
    Chen J; Li X; Liu Q; Wu Y; Shu L; He Z; Ye C; Ma M
    J Biomed Mater Res A; 2021 Aug; 109(8):1468-1478. PubMed ID: 33289293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications.
    Full SM; Delman C; Gluck JM; Abdmaulen R; Shemin RJ; Heydarkhan-Hagvall S
    J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):39-46. PubMed ID: 24757041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds.
    Baker BM; Nerurkar NL; Burdick JA; Elliott DM; Mauck RL
    J Biomech Eng; 2009 Oct; 131(10):101012. PubMed ID: 19831482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications.
    Milleret V; Simona B; Neuenschwander P; Hall H
    Eur Cell Mater; 2011 Mar; 21():286-303. PubMed ID: 21432783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.
    Wang K; Zhu M; Li T; Zheng W; Li L; Xu M; Zhao Q; Kong D; Wang L
    J Biomed Nanotechnol; 2014 Aug; 10(8):1588-98. PubMed ID: 25016658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth.
    Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid polycaprolactone/polyethylene oxide scaffolds with tunable fiber surface morphology, improved hydrophilicity and biodegradability for bone tissue engineering applications.
    Remya KR; Chandran S; Mani S; John A; Ramesh P
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1444-1462. PubMed ID: 29656699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone).
    He X; Kawazoe N; Chen G
    Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration.
    Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL
    Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Pore Size of Electrospun Vascular Grafts by Electrospraying of Poly(Ethylene Oxide) Microparticles.
    Rafique M; Midgley AC; Wei T; Wang L; Kong D; Wang K
    Methods Mol Biol; 2022; 2375():153-164. PubMed ID: 34591306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.
    Beardslee LA; Stolwijk J; Khaladj DA; Trebak M; Halman J; Torrejon KY; Niamsiri N; Bergkvist M
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1192-201. PubMed ID: 26079689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.