BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31033209)

  • 21. Nuclear-Cytoplasmic Transport Is a Therapeutic Target in Myelofibrosis.
    Yan D; Pomicter AD; Tantravahi S; Mason CC; Senina AV; Ahmann JM; Wang Q; Than H; Patel AB; Heaton WL; Eiring AM; Clair PM; Gantz KC; Redwine HM; Swierczek SI; Halverson BJ; Baloglu E; Shacham S; Khorashad JS; Kelley TW; Salama ME; Miles RR; Boucher KM; Prchal JT; O'Hare T; Deininger MW
    Clin Cancer Res; 2019 Apr; 25(7):2323-2335. PubMed ID: 30563936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A potential role for HSP90 inhibitors in the treatment of JAK2 mutant-positive diseases as demonstrated using quantitative flow cytometry.
    Bareng J; Jilani I; Gorre M; Kantarjian H; Giles F; Hannah A; Albitar M
    Leuk Lymphoma; 2007 Nov; 48(11):2189-95. PubMed ID: 17926180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals.
    Zacharaki D; Ghazanfari R; Li H; Lim HC; Scheding S
    Eur J Haematol; 2018 Jul; 101(1):57-67. PubMed ID: 29645296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2(V617F) myeloproliferative neoplasm patients.
    Amaru Calzada A; Pedrini O; Finazzi G; Leoni F; Mascagni P; Introna M; Rambaldi A; Golay J;
    Exp Hematol; 2013 Mar; 41(3):253-60.e2. PubMed ID: 23111067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway.
    Li Y; Sun W; Han N; Zou Y; Yin D
    BMC Cancer; 2018 Dec; 18(1):1230. PubMed ID: 30526546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crizotinib Has Preclinical Efficacy in Philadelphia-Negative Myeloproliferative Neoplasms.
    Gurska LM; Okabe R; Schurer A; Tong MM; Soto M; Choi D; Ames K; Glushakow-Smith S; Montoya A; Tein E; Miles LA; Cheng H; Hankey-Giblin P; Levine RL; Goel S; Halmos B; Gritsman K
    Clin Cancer Res; 2023 Mar; 29(5):943-956. PubMed ID: 36537918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of Resistance to JAK2 Inhibitors in Myeloproliferative Neoplasms.
    Meyer SC
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):627-642. PubMed ID: 28673392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms.
    Wolach O; Sellar RS; Martinod K; Cherpokova D; McConkey M; Chappell RJ; Silver AJ; Adams D; Castellano CA; Schneider RK; Padera RF; DeAngelo DJ; Wadleigh M; Steensma DP; Galinsky I; Stone RM; Genovese G; McCarroll SA; Iliadou B; Hultman C; Neuberg D; Mullally A; Wagner DD; Ebert BL
    Sci Transl Med; 2018 Apr; 10(436):. PubMed ID: 29643232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity and resistance of JAK2 inhibitors to myeloproliferative neoplasms.
    Bhagwat N; Levine RL; Koppikar P
    Int J Hematol; 2013 Jun; 97(6):695-702. PubMed ID: 23670175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
    Koppikar P; Bhagwat N; Kilpivaara O; Manshouri T; Adli M; Hricik T; Liu F; Saunders LM; Mullally A; Abdel-Wahab O; Leung L; Weinstein A; Marubayashi S; Goel A; Gönen M; Estrov Z; Ebert BL; Chiosis G; Nimer SD; Bernstein BE; Verstovsek S; Levine RL
    Nature; 2012 Sep; 489(7414):155-9. PubMed ID: 22820254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. JAK2 inhibitors in the treatment of myeloproliferative neoplasms.
    Tibes R; Bogenberger JM; Geyer HL; Mesa RA
    Expert Opin Investig Drugs; 2012 Dec; 21(12):1755-74. PubMed ID: 22991927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor.
    Manshouri T; Estrov Z; Quintás-Cardama A; Burger J; Zhang Y; Livun A; Knez L; Harris D; Creighton CJ; Kantarjian HM; Verstovsek S
    Cancer Res; 2011 Jun; 71(11):3831-40. PubMed ID: 21512135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms.
    Fleischman AG; Aichberger KJ; Luty SB; Bumm TG; Petersen CL; Doratotaj S; Vasudevan KB; LaTocha DH; Yang F; Press RD; Loriaux MM; Pahl HL; Silver RT; Agarwal A; O'Hare T; Druker BJ; Bagby GC; Deininger MW
    Blood; 2011 Dec; 118(24):6392-8. PubMed ID: 21860020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NT157 has antineoplastic effects and inhibits IRS1/2 and STAT3/5 in JAK2
    Fenerich BA; Fernandes JC; Rodrigues Alves APN; Coelho-Silva JL; Scopim-Ribeiro R; Scheucher PS; Eide CA; Tognon CE; Druker BJ; Rego EM; Machado-Neto JA; Traina F
    Signal Transduct Target Ther; 2020 Jan; 5(1):5. PubMed ID: 32296029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor.
    Quintás-Cardama A; Manshouri T; Estrov Z; Harris D; Zhang Y; Gaikwad A; Kantarjian HM; Verstovsek S
    Invest New Drugs; 2011 Oct; 29(5):818-26. PubMed ID: 20372971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm.
    Barrio S; Gallardo M; Arenas A; Ayala R; Rapado I; Rueda D; Jiménez-Ubieto A; Albizua E; Burgaleta C; Gilsanz F; Martinez-Lopez J
    Br J Haematol; 2013 Jun; 161(5):667-676. PubMed ID: 23560534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dnmt3a is downregulated by Stat5a and mediates G0/G1 arrest by suppressing the miR-17-5p/Cdkn1a axis in Jak2
    Zhou J; Guo C; Wu H; Li B; Zhou LL; Liang AB; Fu JF
    BMC Cancer; 2021 Nov; 21(1):1213. PubMed ID: 34773997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2.
    Yang J; Weisberg EL; Liu X; Magin RS; Chan WC; Hu B; Schauer NJ; Zhang S; Lamberto I; Doherty L; Meng C; Sattler M; Cabal-Hierro L; Winer E; Stone R; Marto JA; Griffin JD; Buhrlage SJ
    Leukemia; 2022 Jan; 36(1):210-220. PubMed ID: 34326465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.
    Hoermann G; Cerny-Reiterer S; Herrmann H; Blatt K; Bilban M; Gisslinger H; Gisslinger B; Müllauer L; Kralovics R; Mannhalter C; Valent P; Mayerhofer M
    FASEB J; 2012 Feb; 26(2):894-906. PubMed ID: 22051730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.