These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31033730)

  • 1. The antibody response in HIV-1-infected donors.
    Richardson SI; Moore PL
    Curr Opin HIV AIDS; 2019 Jul; 14(4):233-239. PubMed ID: 31033730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlates of broadly neutralizing antibody development.
    Abela IA; Kadelka C; Trkola A
    Curr Opin HIV AIDS; 2019 Jul; 14(4):279-285. PubMed ID: 31107283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design.
    McGuire AT
    Curr Opin HIV AIDS; 2019 Jul; 14(4):294-301. PubMed ID: 30946041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical question for HIV vaccine development: which antibodies to induce?
    Zolla-Pazner S
    Science; 2014 Jul; 345(6193):167-8. PubMed ID: 25013066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.
    Ahmed Y; Tian M; Gao Y
    AIDS Res Ther; 2017 Sep; 14(1):50. PubMed ID: 28893278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention.
    Stephenson KE; Wagh K; Korber B; Barouch DH
    Annu Rev Immunol; 2020 Apr; 38():673-703. PubMed ID: 32340576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadly Neutralizing Antibodies Against HIV: New Insights to Inform Vaccine Design.
    Sadanand S; Suscovich TJ; Alter G
    Annu Rev Med; 2016; 67():185-200. PubMed ID: 26565674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.
    Richardson SI; Chung AW; Natarajan H; Mabvakure B; Mkhize NN; Garrett N; Abdool Karim S; Moore PL; Ackerman ME; Alter G; Morris L
    PLoS Pathog; 2018 Apr; 14(4):e1006987. PubMed ID: 29630668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy?
    Subbaraman H; Schanz M; Trkola A
    Retrovirology; 2018 Jul; 15(1):52. PubMed ID: 30055627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems serology for decoding infection and vaccine-induced antibody responses to HIV-1.
    Pittala S; Morrison KS; Ackerman ME
    Curr Opin HIV AIDS; 2019 Jul; 14(4):253-264. PubMed ID: 31033729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers.
    Landais E; Moore PL
    Retrovirology; 2018 Sep; 15(1):61. PubMed ID: 30185183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting Adult and Infant Immune Responses to HIV Infection and Vaccination.
    Martinez DR; Permar SR; Fouda GG
    Clin Vaccine Immunol; 2016 Feb; 23(2):84-94. PubMed ID: 26656117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralizing antibodies for HIV-1 prevention.
    Julg B; Barouch DH
    Curr Opin HIV AIDS; 2019 Jul; 14(4):318-324. PubMed ID: 31082819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Immunoglobulin Fc Glycosylation Patterns Are Associated with Disease Nonprogression and Broadly Neutralizing Antibody Responses in Children with HIV Infection.
    Muenchhoff M; Chung AW; Roider J; Dugast AS; Richardson S; Kløverpris H; Leslie A; Ndung'u T; Moore P; Alter G; Goulder PJR
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma Neutralizing Antibodies.
    Mabvakure BM; Scheepers C; Garrett N; Abdool Karim S; Williamson C; Morris L; Moore PL
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30567996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virological features associated with the development of broadly neutralizing antibodies to HIV-1.
    Moore PL; Williamson C; Morris L
    Trends Microbiol; 2015 Apr; 23(4):204-11. PubMed ID: 25572881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Vaccine-Induced CD4 T Cell Functional Profiles by Changes in Components of HIV Vaccine Regimens in Humans.
    Pissani F; Schulte B; Eller MA; Schultz BT; Ratto-Kim S; Marovich M; Thongcharoen P; Sriplienchan S; Rerks-Ngarm S; Pitisuttithum P; Esser S; Alter G; Robb ML; Kim JH; Michael NL; Streeck H
    J Virol; 2018 Dec; 92(23):. PubMed ID: 30209165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems serology for evaluation of HIV vaccine trials.
    Ackerman ME; Barouch DH; Alter G
    Immunol Rev; 2017 Jan; 275(1):262-270. PubMed ID: 28133810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons learned from human HIV vaccine trials.
    Pollara J; Easterhoff D; Fouda GG
    Curr Opin HIV AIDS; 2017 May; 12(3):216-221. PubMed ID: 28230655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coadministration of CH31 Broadly Neutralizing Antibody Does Not Affect Development of Vaccine-Induced Anti-HIV-1 Envelope Antibody Responses in Infant Rhesus Macaques.
    Dennis M; Eudailey J; Pollara J; McMillan AS; Cronin KD; Saha PT; Curtis AD; Hudgens MG; Fouda GG; Ferrari G; Alam M; Van Rompay KKA; De Paris K; Permar S; Shen X
    J Virol; 2019 Mar; 93(5):. PubMed ID: 30541851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.