These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31033970)

  • 21. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.
    Stojanović M; Carević M; Mihailović M; Veličković D; Dimitrijević A; Milosavić N; Bezbradica D
    Biotechnol Appl Biochem; 2015; 62(4):458-66. PubMed ID: 25224149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential.
    Giles GI; Fry FH; Tasker KM; Holme AL; Peers C; Green KN; Klotz LO; Sies H; Jacob C
    Org Biomol Chem; 2003 Dec; 1(23):4317-22. PubMed ID: 14685335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic biosynthesis of L-ascorbyl acetate by immobilized Thermomyces lanuginosus lipase (Lipozyme TLIM).
    Zhang DH; Lv YQ; Zhi GY; Yuwen LX
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1163-8. PubMed ID: 21744121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photophysical Properties of S, Se and Te-Substituted Deoxyguanosines: Insight into Their Ability To Act as Chemotherapeutic Agents.
    Pirillo J; Mazzone G; Russo N; Bertini L
    J Chem Inf Model; 2017 Feb; 57(2):234-242. PubMed ID: 28009169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and properties of fused-ring-expanded porphyrins that were core-modified with Group 16 heteroatoms.
    Xu HJ; Mack J; Wu D; Xue ZL; Descalzo AB; Rurack K; Kobayashi N; Shen Z
    Chemistry; 2012 Dec; 18(52):16844-67. PubMed ID: 23255265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and thermodynamic investigation of enzymatic L-ascorbyl acetate synthesis.
    Zhang DH; Li C; Zhi GY
    J Biotechnol; 2013 Dec; 168(4):416-20. PubMed ID: 24211407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of organic diselenides and ditellurides by H
    Bortoli M; Zaccaria F; Dalla Tiezza M; Bruschi M; Fonseca Guerra C; Bickelhaupt FM; Orian L
    Phys Chem Chem Phys; 2018 Aug; 20(32):20874-20885. PubMed ID: 30066704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms.
    Battin EE; Brumaghim JL
    Cell Biochem Biophys; 2009; 55(1):1-23. PubMed ID: 19548119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics.
    Back TG; Kuzma D; Parvez M
    J Org Chem; 2005 Nov; 70(23):9230-6. PubMed ID: 16268595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.
    Bhabak KP; Mugesh G
    Acc Chem Res; 2010 Nov; 43(11):1408-19. PubMed ID: 20690615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemo-enzymatic synthesis of vinyl and l-ascorbyl phenolates and their inhibitory effects on advanced glycation end products.
    Hwang SH; Wang Z; Lim SS
    Food Chem; 2017 Jan; 214():726-735. PubMed ID: 27507531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site.
    Bortoli M; Torsello M; Bickelhaupt FM; Orian L
    Chemphyschem; 2017 Nov; 18(21):2990-2998. PubMed ID: 28837255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The central role of metal coordination in selenium antioxidant activity.
    Battin EE; Perron NR; Brumaghim JL
    Inorg Chem; 2006 Jan; 45(2):499-501. PubMed ID: 16411681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity.
    Ren X; Xue Y; Liu J; Zhang K; Zheng J; Luo G; Guo C; Mu Y; Shen J
    Chembiochem; 2002 Apr; 3(4):356-63. PubMed ID: 11933237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isosteric replacement of sulfur with other chalcogens in peptides and proteins.
    Moroder L
    J Pept Sci; 2005 Apr; 11(4):187-214. PubMed ID: 15782428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, Structure and Antioxidant Activity of Cyclohexene-Fused Selenuranes and Related Derivatives.
    Prasad PR; Singh HB; Butcher RJ
    Molecules; 2015 Jul; 20(7):12670-85. PubMed ID: 26184146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production and characterization Te-peptide by induced autolysis of Saccharomyces cerevisiae.
    Morya VK; Dong SJ; Kim EK
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3390-401. PubMed ID: 24532446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotechnological production of biodiesel fuel using biocatalysed transesterification: A review.
    Parawira W
    Crit Rev Biotechnol; 2009; 29(2):82-93. PubMed ID: 19412829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-assisted copper-catalyzed preparation of diaryl chalcogenides.
    Kumar S; Engman L
    J Org Chem; 2006 Jul; 71(14):5400-3. PubMed ID: 16808537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fused selenium-containing protein with both GPx and SOD activities.
    Yu H; Ge Y; Wang Y; Lin CT; Li J; Liu X; Zang T; Xu J; Liu J; Luo G; Shen J
    Biochem Biophys Res Commun; 2007 Jul; 358(3):873-8. PubMed ID: 17506982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.