BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31034138)

  • 1. Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator.
    Selma S; Bernabé-Orts JM; Vazquez-Vilar M; Diego-Martin B; Ajenjo M; Garcia-Carpintero V; Granell A; Orzaez D
    Plant Biotechnol J; 2019 Sep; 17(9):1703-1705. PubMed ID: 31034138
    [No Abstract]   [Full Text] [Related]  

  • 2. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
    Mahas A; Neal Stewart C; Mahfouz MM
    Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications.
    Didovyk A; Borek B; Tsimring L; Hasty J
    Curr Opin Biotechnol; 2016 Aug; 40():177-184. PubMed ID: 27344519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    Park JJ; Dempewolf E; Zhang W; Wang ZY
    PLoS One; 2017; 12(6):e0179410. PubMed ID: 28622347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted genome regulation via synthetic programmable transcriptional regulators.
    Piatek A; Mahfouz MM
    Crit Rev Biotechnol; 2017 Jun; 37(4):429-440. PubMed ID: 27093352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a.
    Breinig M; Schweitzer AY; Herianto AM; Revia S; Schaefer L; Wendler L; Cobos Galvez A; Tschaharganeh DF
    Nat Methods; 2019 Jan; 16(1):51-54. PubMed ID: 30559432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems.
    Papikian A; Liu W; Gallego-Bartolomé J; Jacobsen SE
    Nat Commun; 2019 Feb; 10(1):729. PubMed ID: 30760722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing.
    Lu J; Zhao C; Zhao Y; Zhang J; Zhang Y; Chen L; Han Q; Ying Y; Peng S; Ai R; Wang Y
    Nucleic Acids Res; 2018 Mar; 46(5):e25. PubMed ID: 29237052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prospecting application of CRISPR/Cas9 genome editing technology in research of medicinal plants].
    Hu TY; Gao W; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2016 Aug; 41(16):2953-2957. PubMed ID: 28920331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A copper switch for inducing CRISPR/Cas9-based transcriptional activation tightly regulates gene expression in Nicotiana benthamiana.
    Garcia-Perez E; Diego-Martin B; Quijano-Rubio A; Moreno-Giménez E; Selma S; Orzaez D; Vazquez-Vilar M
    BMC Biotechnol; 2022 Mar; 22(1):12. PubMed ID: 35331211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and Orthogonal Transcription Regulation by Chemically Inducible Artificial Transcription Factors.
    Nomura W; Matsumoto D; Sugii T; Kobayakawa T; Tamamura H
    Biochemistry; 2018 Nov; 57(45):6452-6459. PubMed ID: 30366497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.
    Fujita T; Fujii H
    Int J Mol Sci; 2015 Sep; 16(10):23143-64. PubMed ID: 26404236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional chemical control of CRISPR-Cas9.
    Maji B; Moore CL; Zetsche B; Volz SE; Zhang F; Shoulders MD; Choudhary A
    Nat Chem Biol; 2017 Jan; 13(1):9-11. PubMed ID: 27820801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.