These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31034138)

  • 41. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy.
    Himeda CL; Jones TI; Jones PL
    Mol Ther; 2016 Mar; 24(3):527-35. PubMed ID: 26527377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.
    Okoli A; Okeke MI; Tryland M; Moens U
    Viruses; 2018 Jan; 10(1):. PubMed ID: 29361752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The CRISPR/Cas9 system for plant genome editing and beyond.
    Bortesi L; Fischer R
    Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a RecE/T-Assisted CRISPR-Cas9 Toolbox for Lactobacillus.
    Huang H; Song X; Yang S
    Biotechnol J; 2019 Jul; 14(7):e1800690. PubMed ID: 30927506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates.
    Thurtle-Schmidt DM; Lo TW
    Biochem Mol Biol Educ; 2018 Mar; 46(2):195-205. PubMed ID: 29381252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9.
    Didovyk A; Borek B; Hasty J; Tsimring L
    ACS Synth Biol; 2016 Jan; 5(1):81-8. PubMed ID: 26390083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.
    Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK
    Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR/Cas9 Genome Editing Reveals That the Intron Is Not Essential for
    Bryant JM; Regnault C; Scheidig-Benatar C; Baumgarten S; Guizetti J; Scherf A
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698275
    [No Abstract]   [Full Text] [Related]  

  • 53. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system.
    Zhou Y; Liu Y; Hussmann D; Brøgger P; Al-Saaidi RA; Tan S; Lin L; Petersen TS; Zhou GQ; Bross P; Aagaard L; Klein T; Rønn SG; Pedersen HD; Bolund L; Nielsen AL; Sørensen CB; Luo Y
    Cell Mol Life Sci; 2016 Jul; 73(13):2543-63. PubMed ID: 26755436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.
    Hussain B; Lucas SJ; Budak H
    Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioorthogonal Chemical Epigenetic Modifiers Enable Dose-Dependent CRISPR Targeted Gene Activation in Mammalian Cells.
    Lu D; Foley CA; Birla SV; Hepperla AJ; Simon JM; James LI; Hathaway NA
    ACS Synth Biol; 2022 Apr; 11(4):1397-1407. PubMed ID: 35302756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation.
    Wang X; Tu M; Wang D; Liu J; Li Y; Li Z; Wang Y; Wang X
    Plant Biotechnol J; 2018 Apr; 16(4):844-855. PubMed ID: 28905515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.