These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31034269)

  • 1. Use of three-dimensional time-of-flight magnetic resonance angiography at 1.5 Tesla to evaluate the intracranial arteries of 39 dogs with idiopathic epilepsy.
    Ishikawa C; Ito D; Tanaka N; Kitagawa M
    Am J Vet Res; 2019 May; 80(5):480-489. PubMed ID: 31034269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized 4D time-of-flight MR angiography using saturation pulse.
    Shibukawa S; Nishio H; Niwa T; Obara M; Miyati T; Hara T; Imai Y; Muro I
    J Magn Reson Imaging; 2016 Jun; 43(6):1320-6. PubMed ID: 26666670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla.
    Koktzoglou I; Walker MT; Meyer JR; Murphy IG; Edelman RR
    J Cardiovasc Magn Reson; 2016 Apr; 18():18. PubMed ID: 27067840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla.
    Harteveld AA; De Cocker LJ; Dieleman N; van der Kolk AG; Zwanenburg JJ; Robe PA; Luijten PR; Hendrikse J
    PLoS One; 2015; 10(3):e0121051. PubMed ID: 25774881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries.
    Tang H; Hu N; Yuan Y; Xia C; Liu X; Zuo P; Stalder AF; Schmidt M; Zhou X; Song B; Sun J
    Korean J Radiol; 2019 Feb; 20(2):265-274. PubMed ID: 30672166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study.
    Chen L; Mossa-Basha M; Sun J; Hippe DS; Balu N; Yuan Q; Pimentel K; Hatsukami TS; Hwang JN; Yuan C
    Magn Reson Imaging; 2019 Apr; 57():293-302. PubMed ID: 30580079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of field strength on intracranial vessel conspicuity in canine magnetic resonance angiography.
    Rodriguez D; Rylander H; Vigen KK; Adams WM
    Vet Radiol Ultrasound; 2009; 50(5):477-82. PubMed ID: 19788030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
    Deng X; Zhang Z; Zhang Y; Zhang D; Wang R; Ye X; Xu L; Wang B; Wang K; Zhao J
    J Neurosurg; 2016 Jun; 124(6):1716-25. PubMed ID: 26544772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved visualization of intracranial vessels by gradient moment nulling in hybrid of opposite-contrast magnetic resonance angiography (HOP MRA).
    Azuma T; Kodama T; Yano T; Suzuki M; Kimura T; Tamaribuchi Y
    Magn Reson Med Sci; 2010; 9(3):159-65. PubMed ID: 20885090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of extracranial-intracranial bypass in Moyamoya disease using 3T time-of-flight MR angiography: comparison with CT angiography.
    Chen Q; Qi R; Cheng X; Zhou C; Luo S; Ni L; Huang W
    Vasa; 2014 Jul; 43(4):278-83. PubMed ID: 25007906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA.
    Zhang Z; Fan Z; Kong Q; Xiao J; Wu F; An J; Yang Q; Li D; Zhuo Y
    Eur Radiol; 2019 Mar; 29(3):1452-1459. PubMed ID: 30151642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-of-Flight Intracranial MRA at 3 T versus 5 T versus 7 T: Visualization of Distal Small Cerebral Arteries.
    Shi Z; Zhao X; Zhu S; Miao X; Zhang Y; Han S; Wang B; Zhang B; Ye X; Dai Y; Chen C; Rao S; Lin J; Zeng M; Wang H
    Radiology; 2023 Jan; 306(1):207-217. PubMed ID: 36040333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation.
    Grayev A; Shimakawa A; Cousins J; Turski P; Brittain J; Reeder S
    J Magn Reson Imaging; 2009 Jun; 29(6):1367-74. PubMed ID: 19472410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T.
    Willinek WA; Gieseke J; von Falkenhausen M; Born M; Hadizadeh D; Manka C; Textor HJ; Schild HH; Kuhl CK
    Rofo; 2004 Jan; 176(1):21-6. PubMed ID: 14712403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superselective pseudo-continuous arterial spin labeling angiography.
    Jensen-Kondering U; Lindner T; van Osch MJ; Rohr A; Jansen O; Helle M
    Eur J Radiol; 2015 Sep; 84(9):1758-67. PubMed ID: 26113163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry, asymmetry and hypoplasia of the intracranial internal carotid artery on magnetic resonance angiography.
    Mujagić S; Kozić D; Huseinagić H; Smajlović D
    Acta Med Acad; 2016 May; 45(1):1-9. PubMed ID: 27284792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved three-dimensional magnetic resonance digital subtraction angiography without contrast material in the brain: Initial investigation.
    Hori M; Shiraga N; Watanabe Y; Aoki S; Isono S; Yui M; Ohtomo K; Araki T
    J Magn Reson Imaging; 2009 Jul; 30(1):214-8. PubMed ID: 19466714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.