BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31034524)

  • 1. Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition.
    Foong CP; Higuchi-Takeuchi M; Numata K
    PLoS One; 2019; 14(4):e0212654. PubMed ID: 31034524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics.
    Foong CP; Higuchi-Takeuchi M; Ohtawa K; Asai T; Liu H; Ozeki Y; Numata K
    ACS Synth Biol; 2022 Feb; 11(2):909-920. PubMed ID: 35061943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate-Inducing Metabolic States Enhance Polyhydroxyalkanoate Production in Marine Purple Non-sulfur Bacteria Under Aerobic Conditions.
    Higuchi-Takeuchi M; Numata K
    Front Bioeng Biotechnol; 2019; 7():118. PubMed ID: 31192201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine Purple Photosynthetic Bacteria as Sustainable Microbial Production Hosts.
    Higuchi-Takeuchi M; Numata K
    Front Bioeng Biotechnol; 2019; 7():258. PubMed ID: 31681740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Class I Polyhydroxyalkanoate Synthase from the Purple Photosynthetic Bacterium
    Higuchi-Takeuchi M; Motoda Y; Kigawa T; Numata K
    ACS Omega; 2017 Aug; 2(8):5071-5078. PubMed ID: 30023736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.
    Higuchi-Takeuchi M; Morisaki K; Toyooka K; Numata K
    PLoS One; 2016; 11(8):e0160981. PubMed ID: 27513570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by
    Bayon-Vicente G; Zarbo S; Deutschbauer A; Wattiez R; Leroy B
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A marine photosynthetic microbial cell factory as a platform for spider silk production.
    Foong CP; Higuchi-Takeuchi M; Malay AD; Oktaviani NA; Thagun C; Numata K
    Commun Biol; 2020 Jul; 3(1):357. PubMed ID: 32641733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioplastic production by feeding the marine Rhodovulum sulfidophilum DSM-1374 with four different carbon sources under batch, fed-batch and semi-continuous growth regimes.
    Carlozzi P; Touloupakis E
    N Biotechnol; 2021 May; 62():10-17. PubMed ID: 33333263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pH, temperature and salinity on P3HB synthesis culturing the marine Rhodovulum sulfidophilum DSM-1374.
    Carlozzi P; Di Lorenzo T; Ghanotakis DF; Touloupakis E
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2007-2015. PubMed ID: 31927760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of the response regulator CtrA in the extracellular DNA production of the marine bacterium Rhodovulum sulfidophilum.
    Komatsu H; Yamamoto J; Suzuki H; Nagao N; Hirose Y; Ohyama T; Umekage S; Kikuchi Y
    J Gen Appl Microbiol; 2018 Jul; 64(3):103-107. PubMed ID: 29526925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and hydrogen-producing characters of a highly efficient Hâ‚‚-producing mutant of Rhodovulum sulfidophilum P5.
    Cai J; Wang G
    Bioresour Technol; 2013 Aug; 142():18-25. PubMed ID: 23732918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular RNAs produced by a marine photosynthetic bacterium Rhodovulum sulfidophilum.
    Ando T; Suzuki H; Komura K; Tanaka T; Hiraishi A; Kikuchi Y
    Nucleic Acids Symp Ser (Oxf); 2004; (48):165-6. PubMed ID: 17150530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria.
    Kikuchi Y; Umekage S
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29228187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in cyanobacterial polyhydroxyalkanoates production.
    Singh AK; Mallick N
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 28961962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the carbonic anhydrases and autotrophic carbon dioxide fixation pathways of high CO
    Khandavalli LVNS; Lodha T; Abdullah M; Guruprasad L; Chintalapati S; Chintalapati VR
    Microbiol Res; 2018 Oct; 215():130-140. PubMed ID: 30172299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astaxanthin formation in the marine photosynthetic bacterium Rhodovulum sulfidophilum expressing crtI, crtY, crtW and crtZ.
    Mukoyama D; Takeyama H; Kondo Y; Matsunaga T
    FEMS Microbiol Lett; 2006 Dec; 265(1):69-75. PubMed ID: 17107420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Screening Method for the Isolation of Polyhydroxyalkanoate-Producing Purple Non-sulfur Photosynthetic Bacteria from Natural Seawater.
    Higuchi-Takeuchi M; Morisaki K; Numata K
    Front Microbiol; 2016; 7():1509. PubMed ID: 27708640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of extracellular RNAs produced by the marine photosynthetic bacterium Rhodovulum sulfidophilum.
    Ando T; Suzuki H; Nishimura S; Tanaka T; Hiraishi A; Kikuchi Y
    J Biochem; 2006 Apr; 139(4):805-11. PubMed ID: 16672282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.
    Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A
    Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.