These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31034524)

  • 41. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor.
    Fujimoto H; Wakabayashi M; Yamashiro H; Maeda I; Isoda K; Kondoh M; Kawase M; Miyasaka H; Yagi K
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):332-8. PubMed ID: 16733729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in time course extracellular production of human pre-miR-29b from Rhodovulum sulfidophilum.
    Pereira P; Pedro AQ; Tomás J; Maia CJ; Queiroz JA; Figueiras A; Sousa F
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3723-34. PubMed ID: 26860940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purple non-sulfur bacteria as cell factories to produce a copolymer as PHBV under light/dark cycle in a 4-L photobioreactor.
    Carlozzi P; Touloupakis E; Filippi S; Cinelli P; Mezzetta A; Seggiani M
    J Biotechnol; 2022 Sep; 356():51-59. PubMed ID: 35932942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: Statistical optimization and characterization.
    Israni N; Shivakumar S
    Int J Biol Macromol; 2020 Apr; 148():20-30. PubMed ID: 31926923
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Draft Genome Sequences of Three Closely Related Isolates of the Purple Nonsulfur Bacterium
    Guzman MS; McGinley B; Santiago-Merced N; Gupta D; Bose A
    Genome Announc; 2017 Mar; 5(11):. PubMed ID: 28302776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new membrane-bound cytochrome c works as an electron donor to the photosynthetic reaction center complex in the purple bacterium, Rhodovulum sulfidophilum.
    Kimura Y; Alric J; Verméglio A; Masuda S; Hagiwara Y; Matsuura K; Shimada K; Nagashima KV
    J Biol Chem; 2007 Mar; 282(9):6463-72. PubMed ID: 17197696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PHA bioplastics, biochemicals, and energy from crops.
    Somleva MN; Peoples OP; Snell KD
    Plant Biotechnol J; 2013 Feb; 11(2):233-52. PubMed ID: 23294864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020.
    Norhafini H; Huong KH; Amirul AA
    Int J Biol Macromol; 2019 Mar; 125():1024-1032. PubMed ID: 30557643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing.
    Kosseva MR; Rusbandi E
    Int J Biol Macromol; 2018 Feb; 107(Pt A):762-778. PubMed ID: 28928063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4.
    Masuda S; Hori K; Maruyama F; Ren S; Sugimoto S; Yamamoto N; Mori H; Yamada T; Sato S; Tabata S; Ohta H; Kurokawa K
    Genome Announc; 2013 Aug; 1(4):. PubMed ID: 23929476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon flux to growth or polyhydroxyalkanoate synthesis under microaerophilic conditions is affected by fatty acid chain-length in Pseudomonas putida LS46.
    Blunt W; Dartiailh C; Sparling R; Gapes D; Levin DB; Cicek N
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6437-6449. PubMed ID: 29799090
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon dioxide sequestration by chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate.
    Kumar M; Gupta A; Thakur IS
    Bioresour Technol; 2016 Aug; 213():249-256. PubMed ID: 26920627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.
    Jiang G; Hill DJ; Kowalczuk M; Johnston B; Adamus G; Irorere V; Radecka I
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27447619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.
    Zou H; Shi M; Zhang T; Li L; Li L; Xian M
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7417-7426. PubMed ID: 28884324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments.
    Li M; Wilkins MR
    Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Leadbeater DR; Bruce NC; Tonon T
    Microb Genom; 2022 Sep; 8(9):. PubMed ID: 36125959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida.
    Escapa IF; García JL; Bühler B; Blank LM; Prieto MA
    Environ Microbiol; 2012 Apr; 14(4):1049-63. PubMed ID: 22225632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.
    Rojas-Rosas O; Villafaña-Rojas J; López-Dellamary FA; Nungaray-Arellano J; González-Reynoso O
    Can J Microbiol; 2007 Jul; 53(7):840-51. PubMed ID: 17898839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.