These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 31034558)

  • 1. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins.
    Migawa MT; Shen W; Wan WB; Vasquez G; Oestergaard ME; Low A; De Hoyos CL; Gupta R; Murray S; Tanowitz M; Bell M; Nichols JG; Gaus H; Liang XH; Swayze EE; Crooke ST; Seth PP
    Nucleic Acids Res; 2019 Jun; 47(11):5465-5479. PubMed ID: 31034558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides.
    Østergaard ME; De Hoyos CL; Wan WB; Shen W; Low A; Berdeja A; Vasquez G; Murray S; Migawa MT; Liang XH; Swayze EE; Crooke ST; Seth PP
    Nucleic Acids Res; 2020 Feb; 48(4):1691-1700. PubMed ID: 31980820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins.
    Zhang L; Vickers TA; Sun H; Liang XH; Crooke ST
    Nucleic Acids Res; 2021 Mar; 49(5):2721-2739. PubMed ID: 33577678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Phosphorus and Non-Phosphorus Neutral Oligonucleotide Backbones for Enhancing Therapeutic Index of Gapmer Antisense Oligonucleotides.
    Vasquez G; Migawa MT; Wan WB; Low A; Tanowitz M; Swayze EE; Seth PP
    Nucleic Acid Ther; 2022 Feb; 32(1):40-50. PubMed ID: 34698585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index.
    Shen W; De Hoyos CL; Migawa MT; Vickers TA; Sun H; Low A; Bell TA; Rahdar M; Mukhopadhyay S; Hart CE; Bell M; Riney S; Murray SF; Greenlee S; Crooke RM; Liang XH; Seth PP; Crooke ST
    Nat Biotechnol; 2019 Jun; 37(6):640-650. PubMed ID: 31036929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.
    Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST
    Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific incorporation of 5'-methyl DNA enhances the therapeutic profile of gapmer ASOs.
    Vasquez G; Freestone GC; Wan WB; Low A; De Hoyos CL; Yu J; Prakash TP; Ǿstergaard ME; Liang XH; Crooke ST; Swayze EE; Migawa MT; Seth PP
    Nucleic Acids Res; 2021 Feb; 49(4):1828-1839. PubMed ID: 33544849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.
    Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST
    Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1.
    Vickers TA; Rahdar M; Prakash TP; Crooke ST
    Nucleic Acids Res; 2019 Nov; 47(20):10865-10880. PubMed ID: 31495875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Combination of Mesyl-Phosphoramidate Inter-Nucleotide Linkages and 2'-
    Zhang L; Liang XH; De Hoyos CL; Migawa M; Nichols JG; Freestone G; Tian J; Seth PP; Crooke ST
    Nucleic Acid Ther; 2022 Oct; 32(5):401-411. PubMed ID: 35861704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides.
    Wang S; Allen N; Vickers TA; Revenko AS; Sun H; Liang XH; Crooke ST
    Nucleic Acids Res; 2018 Apr; 46(7):3579-3594. PubMed ID: 29514240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages.
    Wan WB; Migawa MT; Vasquez G; Murray HM; Nichols JG; Gaus H; Berdeja A; Lee S; Hart CE; Lima WF; Swayze EE; Seth PP
    Nucleic Acids Res; 2014 Dec; 42(22):13456-68. PubMed ID: 25398895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorothioate modified oligonucleotide-protein interactions.
    Crooke ST; Vickers TA; Liang XH
    Nucleic Acids Res; 2020 Jun; 48(10):5235-5253. PubMed ID: 32356888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2'-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF.
    Shen W; Liang XH; Sun H; Crooke ST
    Nucleic Acids Res; 2015 May; 43(9):4569-78. PubMed ID: 25855809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorothioate Antisense Oligonucleotides Bind P-Body Proteins and Mediate P-Body Assembly.
    Wang Y; Shen W; Liang XH; Crooke ST
    Nucleic Acid Ther; 2019 Dec; 29(6):343-358. PubMed ID: 31429620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides.
    Zhang L; Bernardo KD; Vickers TA; Tian J; Liang XH; Crooke ST
    Nucleic Acid Ther; 2022 Aug; 32(4):280-299. PubMed ID: 35852833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation.
    Hvam ML; Cai Y; Dagnæs-Hansen F; Nielsen JS; Wengel J; Kjems J; Howard KA
    Mol Ther; 2017 Jul; 25(7):1710-1717. PubMed ID: 28641935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-Phase Separation of Toxic Phosphorothioate Antisense Oligonucleotide-Protein Nucleolar Aggregates Is Cytoprotective.
    Liang XH; De Hoyos CL; Shen W; Zhang L; Fazio M; Crooke ST
    Nucleic Acid Ther; 2021 Apr; 31(2):126-144. PubMed ID: 33534636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides.
    Iwamoto N; Butler DCD; Svrzikapa N; Mohapatra S; Zlatev I; Sah DWY; Meena ; Standley SM; Lu G; Apponi LH; Frank-Kamenetsky M; Zhang JJ; Vargeese C; Verdine GL
    Nat Biotechnol; 2017 Sep; 35(9):845-851. PubMed ID: 28829437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides.
    Anderson BA; Freestone GC; Low A; De-Hoyos CL; Iii WJD; Østergaard ME; Migawa MT; Fazio M; Wan WB; Berdeja A; Scandalis E; Burel SA; Vickers TA; Crooke ST; Swayze EE; Liang X; Seth PP
    Nucleic Acids Res; 2021 Sep; 49(16):9026-9041. PubMed ID: 34417625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.