These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31034625)

  • 1. Further Development and Refinement of Interspecies Correlation Estimation Models for Current-Use Dispersants.
    Bejarano AC
    Environ Toxicol Chem; 2019 Aug; 38(8):1682-1691. PubMed ID: 31034625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical review and analysis of aquatic toxicity data on oil spill dispersants.
    Bejarano AC
    Environ Toxicol Chem; 2018 Dec; 37(12):2989-3001. PubMed ID: 30125977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species.
    Bejarano AC; Barron MG
    Environ Sci Technol; 2014 Apr; 48(8):4564-72. PubMed ID: 24678991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of algal interspecies correlation estimation models for chemical hazard assessment.
    Brill JL; Belanger SE; Chaney JG; Dyer SD; Raimondo S; Barron MG; Pittinger CA
    Environ Toxicol Chem; 2016 Sep; 35(9):2368-78. PubMed ID: 26792236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive Toxicity Models for Chemically Related Substances: A Case Study with Nonionic Alcohol Ethoxylate Surfactant.
    Bejarano AC; Wheeler JR
    Environ Toxicol Chem; 2021 Jul; 40(7):2073-2082. PubMed ID: 33818805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species.
    Fan J; Yan Z; Zheng X; Wu J; Wang S; Wang P; Zhang Q
    Chemosphere; 2019 Jun; 224():833-839. PubMed ID: 30851535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database.
    Bejarano AC; Raimondo S; Barron MG
    Environ Sci Technol; 2017 Jul; 51(14):8158-8165. PubMed ID: 28636817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds.
    Bejarano AC; Barron MG
    Environ Toxicol Chem; 2016 Jan; 35(1):56-64. PubMed ID: 26184086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models.
    Zhang S; Wang L; Wang Z; Fan D; Shi L; Liu J
    Chemosphere; 2017 Mar; 171():142-148. PubMed ID: 28013075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Interspecies Correlation Estimation (ICE) models and QSAR in estimating species sensitivity to pesticides.
    Raimondo S; Barron MG
    SAR QSAR Environ Res; 2020 Jan; 31(1):1-18. PubMed ID: 31724447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo[a]pyrene.
    Wu J; Yan Z; Yi X; Lin Y; Ni J; Gao X; Liu Z; Shi X
    Chemosphere; 2016 Feb; 144():2183-8. PubMed ID: 26595312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models.
    Willming MM; Lilavois CR; Barron MG; Raimondo S
    Environ Sci Technol; 2016 Oct; 50(19):10700-10707. PubMed ID: 27585402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute toxicity of Corexit EC9500A and assessment of dioctyl sulfosuccinate as an indicator for monitoring four oil dispersants applied to diluted bitumen.
    MacInnis CY; Brunswick P; Park GH; Buday C; Schroeder G; Fieldhouse B; Brown CE; van Aggelen G; Shang D
    Environ Toxicol Chem; 2018 May; 37(5):1309-1319. PubMed ID: 29322545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions.
    Barron MG; Hemmer MJ; Jackson CR
    Integr Environ Assess Manag; 2013 Oct; 9(4):610-5. PubMed ID: 23554001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An initial probabilistic hazard assessment of oil dispersants approved by the United States National Contingency Plan.
    Berninger JP; Williams ES; Brooks BW
    Environ Toxicol Chem; 2011 Jul; 30(7):1704-8. PubMed ID: 21425326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species.
    Hemmer MJ; Barron MG; Greene RM
    Environ Toxicol Chem; 2011 Oct; 30(10):2244-52. PubMed ID: 21766318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species.
    Raimondo S; Jackson CR; Barron MG
    Environ Sci Technol; 2010 Oct; 44(19):7711-6. PubMed ID: 20795664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the toxicity of chemical dispersants.
    Wise J; Wise JP
    Rev Environ Health; 2011; 26(4):281-300. PubMed ID: 22435326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of acute aquatic effects of the oil dispersant Corexit 9500 with those of other Corexit series dispersants.
    Singer MM; George S; Jacobson S; Lee I; Weetman LL; Tjeerdema RS; Sowby ML
    Ecotoxicol Environ Saf; 1996 Nov; 35(2):183-9. PubMed ID: 8950541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.