BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3103472)

  • 1. Endothelium-dependent contraction to stretch in canine basilar arteries.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    Am J Physiol; 1987 Mar; 252(3 Pt 2):H671-3. PubMed ID: 3103472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry.
    Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S97-101. PubMed ID: 2433536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cell-permeant calcium chelators on contractility in monkey basilar artery.
    Macdonald RL; Zhang J; Marton LS; Weir B
    J Neurotrauma; 1999 Jan; 16(1):37-47. PubMed ID: 9989465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of removal of the endothelium on vasocontraction in canine and rabbit basilar arteries.
    Nakagomi T; Kassell NF; Sasaki T; Lehman RM; Torner JC; Hongo K; Lee JH
    J Neurosurg; 1988 May; 68(5):757-66. PubMed ID: 2895803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ischemia-reperfusion does not affect reactivity of isolated canine basilar artery.
    Katusić ZS; Michenfelder JD; Milde JH
    J Cereb Blood Flow Metab; 1991 Sep; 11(5):824-8. PubMed ID: 1874814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium-induced endothelium-dependent rhythmic activity in the canine basilar artery.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    J Cardiovasc Pharmacol; 1988 Jul; 12(1):37-41. PubMed ID: 2459532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelin and the production of cerebral vasospasm in dogs.
    Asano T; Ikegaki I; Suzuki Y; Satoh S; Shibuya M
    Biochem Biophys Res Commun; 1989 Mar; 159(3):1345-51. PubMed ID: 2649099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations of mechanical properties in canine basilar arteries after subarachnoid hemorrhage.
    Kim P; Sundt TM; Vanhoutte PM
    J Neurosurg; 1989 Sep; 71(3):430-6. PubMed ID: 2769393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    Stroke; 1988 Apr; 19(4):476-9. PubMed ID: 3129826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in endothelium-dependent responsiveness of the canine basilar artery subarachnoid hemorrhage.
    Kim P; Sundt TM; Vanhoutte PM
    J Neurosurg; 1988 Aug; 69(2):239-46. PubMed ID: 3134520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional changes in cultured strips of canine cerebral arteries after prolonged exposure to oxyhemoglobin.
    Yoshimoto Y; Kim P; Sasaki T; Kirino T; Takakura K
    J Neurosurg; 1995 Nov; 83(5):867-74. PubMed ID: 7472556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasoconstrictor mechanism of 5-hydroxytryptamine in isolated and perfused canine basilar arteries.
    Tsuji T; Chiba S
    Arch Int Pharmacodyn Ther; 1987 Mar; 286(1):111-22. PubMed ID: 3592852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasoconstrictor mechanism of neuropeptides augmented after endothelial removal in isolated, perfused canine basilar arteries.
    Tsuji T; Cook DA
    Neurol Res; 1995 Jun; 17(3):193-200. PubMed ID: 7543980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nicotine exposure, mimicked smoking, directly and indirectly enhanced protein kinase C activity in isolated canine basilar artery, resulting in enhancement of arterial contraction.
    Koide M; Nishizawa S; Yamamoto S; Yamaguchi M; Namba H; Terakawa S
    J Cereb Blood Flow Metab; 2005 Mar; 25(3):292-301. PubMed ID: 15647745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct effect of levobupivacaine in isolated rat aorta involves lipoxygenase pathway activation and endothelial nitric oxide release.
    Choi YS; Jeong YS; Ok SH; Shin IW; Lee SH; Park JY; Hwang EM; Hah YS; Sohn JT
    Anesth Analg; 2010 Feb; 110(2):341-9. PubMed ID: 19955508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary omega-3 fatty acids and endothelium-dependent responses in porcine cerebral arteries.
    Kim P; Shimokawa H; Vanhoutte PM
    Stroke; 1992 Mar; 23(3):407-13. PubMed ID: 1542904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent contraction induced by platelet-derived substances in canine basilar arteries.
    Shirahase H; Usui H; Shimaji H; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1990 Oct; 255(1):182-6. PubMed ID: 2213554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic contraction in canine basilar arteries: role of endothelium.
    Gräser T; Vedernikov YP
    Exp Pathol; 1991; 42(4):245-9. PubMed ID: 1959586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UTP induces vascular responses in the isolated and perfused canine epicardial coronary artery via UTP-preferring P2Y receptors.
    Matsumoto T; Nakane T; Chiba S
    Br J Pharmacol; 1997 Dec; 122(8):1625-32. PubMed ID: 9422807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery.
    Fujiwara S; Kassell NF; Sasaki T; Nakagomi T; Lehman RM
    J Neurosurg; 1986 Mar; 64(3):445-52. PubMed ID: 3950722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.