These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31034763)

  • 1. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers.
    Spicer G; Efeyan A; Adam AP; Thompson SA
    J Biophotonics; 2019 Sep; 12(9):e201900044. PubMed ID: 31034763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing DNA for nanothermometry.
    Spicer G; Gutierrez-Erlandsson S; Matesanz R; Bernard H; Adam AP; Efeyan A; Thompson S
    J Biophotonics; 2021 Feb; 14(2):e202000341. PubMed ID: 33128802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleic acid based fluorescent nanothermometers.
    Ebrahimi S; Akhlaghi Y; Kompany-Zareh M; Rinnan A
    ACS Nano; 2014 Oct; 8(10):10372-82. PubMed ID: 25265370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanothermometry: From Microscopy to Thermal Treatments.
    Zhou H; Sharma M; Berezin O; Zuckerman D; Berezin MY
    Chemphyschem; 2016 Jan; 17(1):27-36. PubMed ID: 26443335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanometer-scale luminescent thermometry in bovine embryos.
    Alkahtani M; Jiang L; Brick R; Hemmer P; Scully M
    Opt Lett; 2017 Dec; 42(23):4812-4815. PubMed ID: 29216117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of irreversible optical nanothermometers for thermal ablations.
    Gustafson TP; Cao Q; Wang ST; Berezin MY
    Chem Commun (Camb); 2013 Jan; 49(7):680-2. PubMed ID: 23223185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaching Deeper: Absolute In Vivo Thermal Reading of Liver by Combining Superbright Ag
    Lifante J; Shen Y; Zabala Gutierrez I; Rubia-Rodríguez I; Ortega D; Fernandez N; Melle S; Granado M; Rubio-Retama J; Jaque D; Ximendes E
    Adv Sci (Weinh); 2021 May; 8(9):2003838. PubMed ID: 33977056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances and challenges for fluorescence nanothermometry.
    Zhou J; Del Rosal B; Jaque D; Uchiyama S; Jin D
    Nat Methods; 2020 Oct; 17(10):967-980. PubMed ID: 32989319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells.
    Oyama K; Takabayashi M; Takei Y; Arai S; Takeoka S; Ishiwata S; Suzuki M
    Lab Chip; 2012 May; 12(9):1591-3. PubMed ID: 22437040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro/Nanoscale Thermometry for Cellular Thermal Sensing.
    Bai T; Gu N
    Small; 2016 Sep; 12(34):4590-610. PubMed ID: 27172908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric nanothermometer based on an emissive Ln3+-organic framework.
    Cadiau A; Brites CD; Costa PM; Ferreira RA; Rocha J; Carlos LD
    ACS Nano; 2013 Aug; 7(8):7213-8. PubMed ID: 23869817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ga
    Salerno EV; Zeler J; Eliseeva SV; Hernández-Rodríguez MA; Carneiro Neto AN; Petoud S; Pecoraro VL; Carlos LD
    Chemistry; 2020 Nov; 26(61):13792-13796. PubMed ID: 32663350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.
    Wu Y; Liu J; Ma J; Liu Y; Wang Y; Wu D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14396-405. PubMed ID: 27197838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of fluorescent nanocapsules as ratiometric nanothermometers.
    Zhegalova NG; Dergunov SA; Wang ST; Pinkhassik E; Berezin MY
    Chemistry; 2014 Aug; 20(33):10292-7. PubMed ID: 25044240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review.
    Qiao J; Mu X; Qi L
    Biosens Bioelectron; 2016 Nov; 85():403-413. PubMed ID: 27203462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots.
    Han Y; Liu Y; Zhao H; Vomiero A; Li R
    J Mater Chem B; 2021 May; 9(20):4111-4119. PubMed ID: 34037068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties.
    Piñol R; Brites CD; Bustamante R; Martínez A; Silva NJ; Murillo JL; Cases R; Carrey J; Estepa C; Sosa C; Palacio F; Carlos LD; Millán A
    ACS Nano; 2015 Mar; 9(3):3134-42. PubMed ID: 25693033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing.
    Kalytchuk S; Poláková K; Wang Y; Froning JP; Cepe K; Rogach AL; Zbořil R
    ACS Nano; 2017 Feb; 11(2):1432-1442. PubMed ID: 28125202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges for optical nanothermometry in biological environments.
    Quintanilla M; Henriksen-Lacey M; Renero-Lecuna C; Liz-Marzán LM
    Chem Soc Rev; 2022 Jun; 51(11):4223-4242. PubMed ID: 35587578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.