BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31035060)

  • 1. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abdomen CT multi-organ segmentation using token-based MLP-Mixer.
    Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X
    Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network.
    Kim H; Jung J; Kim J; Cho B; Kwak J; Jang JY; Lee SW; Lee JG; Yoon SM
    Sci Rep; 2020 Apr; 10(1):6204. PubMed ID: 32277135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.
    Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation.
    Yan Y; Zhang D
    PLoS One; 2021; 16(5):e0252287. PubMed ID: 34043732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transformer-guided cross-modality adaptive feature fusion framework for esophageal gross tumor volume segmentation.
    Yue Y; Li N; Zhang G; Xing W; Zhu Z; Liu X; Song S; Ta D
    Comput Methods Programs Biomed; 2024 Jun; 251():108216. PubMed ID: 38761412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HCA-DAN: hierarchical class-aware domain adaptive network for gastric tumor segmentation in 3D CT images.
    Yuan N; Zhang Y; Lv K; Liu Y; Yang A; Hu P; Yu H; Han X; Guo X; Li J; Wang T; Lei B; Ma G
    Cancer Imaging; 2024 May; 24(1):63. PubMed ID: 38773670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation.
    Qin W; Wu J; Han F; Yuan Y; Zhao W; Ibragimov B; Gu J; Xing L
    Phys Med Biol; 2018 May; 63(9):095017. PubMed ID: 29633960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.
    Gibson E; Giganti F; Hu Y; Bonmati E; Bandula S; Gurusamy K; Davidson B; Pereira SP; Clarkson MJ; Barratt DC
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1822-1834. PubMed ID: 29994628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An end-to-end multi-scale airway segmentation framework based on pulmonary CT image.
    Yuan Y; Tan W; Xu L; Bao N; Zhu Q; Wang Z; Wang R
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657624
    [No Abstract]   [Full Text] [Related]  

  • 11. Partial Label Multi-organ Segmentation based on Local Feature Enhancement.
    Zhao Y; Hu P; Li J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HFCF-Net: A hybrid-feature cross fusion network for COVID-19 lesion segmentation from CT volumetric images.
    Wang Y; Yang Q; Tian L; Zhou X; Rekik I; Huang H
    Med Phys; 2022 Jun; 49(6):3797-3815. PubMed ID: 35301729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision.
    Yang S; Liang Y; Wu S; Sun P; Chen Z
    J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMAN: Cascaded Multi-scale Spatial Channel Attention-guided Network for large 3D deformable registration of liver CT images.
    Pham XL; Luu MH; van Walsum T; Mai HS; Klein S; Le NH; Chu DT
    Med Image Anal; 2024 Aug; 96():103212. PubMed ID: 38830326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary Deep Attention Convolutional Neural Networks for 2D and 3D Medical Image Segmentation.
    Hassanzadeh T; Essam D; Sarker R
    J Digit Imaging; 2021 Dec; 34(6):1387-1404. PubMed ID: 34729668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-aided 3D proxy-bridged region-growing framework for multi-organ segmentation.
    Chen Z; Yao L; Liu Y; Han X; Gong Z; Luo J; Zhao J; Fang G
    Sci Rep; 2024 Apr; 14(1):9784. PubMed ID: 38684904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations.
    Roth HR; Lu L; Seff A; Cherry KM; Hoffman J; Wang S; Liu J; Turkbey E; Summers RM
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):520-7. PubMed ID: 25333158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascaded cross-attention transformers and convolutional neural networks for multi-organ segmentation in male pelvic computed tomography.
    Pemmaraju R; Kim G; Mekki L; Song DY; Lee J
    J Med Imaging (Bellingham); 2024 Mar; 11(2):024009. PubMed ID: 38595327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. View adaptive unified self-supervised technique for abdominal organ segmentation.
    Jain S; Dhir R; Sikka G
    Comput Biol Med; 2024 Jul; 177():108659. PubMed ID: 38823366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abdominal multi-organ segmentation in Multi-sequence MRIs based on visual attention guided network and knowledge distillation.
    Fu H; Zhang J; Li B; Chen L; Zou J; Zhang Z; Zou H
    Phys Med; 2024 Jun; 122():103385. PubMed ID: 38810392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.