These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31035092)

  • 21. Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor.
    Yan R; Yang F; Wu Y; Hu Z; Nath B; Yang L; Fang Y
    Bioresour Technol; 2011 Nov; 102(21):9927-32. PubMed ID: 21903380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence enhancement of CdSe/ZnS quantum dots induced by mercury ions and its applications to the on-site sensitive detection of mercury ions.
    Wang H; Song D; Zhou Y; Liu J; Zhu A; Long F
    Mikrochim Acta; 2021 May; 188(6):215. PubMed ID: 34052914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater.
    Sulaymon AH; Ebrahim SE; Mohammed-Ridha MJ
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):175-87. PubMed ID: 22427177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient removal of Hg
    Pobi KK; Mondal B; Nayek S; Patra AK; Saha R
    Water Sci Technol; 2019 Mar; 79(6):1092-1101. PubMed ID: 31070589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium, mercury, and nickel adsorption by tetravalent manganese feroxyhyte: selectivity, kinetic modeling, and thermodynamic study.
    Kokkinos E; Soukakos K; Kostoglou M; Mitrakas M
    Environ Sci Pollut Res Int; 2018 May; 25(13):12263-12273. PubMed ID: 28755144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms.
    Leong YK; Chang JS
    Bioresour Technol; 2020 May; 303():122886. PubMed ID: 32046940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads.
    Solé A; Matamoros V
    Chemosphere; 2016 Dec; 164():516-523. PubMed ID: 27619062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wastewater treatment with multilayer media of waste and natural indigenous materials.
    Rahman MA; Ahsan S; Kaneco S; Katsumata H; Suzuki T; Ohta K
    J Environ Manage; 2005 Jan; 74(2):107-10. PubMed ID: 15627464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Super-resolution imaging and statistical analysis of CdSe/CdS Core/Shell semiconductor nanocrystals.
    Kouskousis BP; van Embden J; Morrish D; Russell SM; Gu M
    J Biophotonics; 2010 Jul; 3(7):437-45. PubMed ID: 20437421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection.
    Kawasaki H; Yoshimura K; Hamaguchi K; Arakawa R
    Anal Sci; 2011; 27(6):591-6. PubMed ID: 21666355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of biological iron sulfide composites and its application in the treatment of cadmium-contaminated wastewater.
    Yang Y; Xie Y; Li X
    J Environ Biol; 2015 Mar; 36(2):393-8. PubMed ID: 25895261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Composites for wastewater purification: A review.
    Jaspal D; Malviya A
    Chemosphere; 2020 May; 246():125788. PubMed ID: 31918098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of free cadmium and selenium ions in the potential mechanism for the enhancement of photoluminescence of CdSe quantum dots under ultraviolet irradiation.
    Bakalova R; Zhelev Z; Jose R; Nagase T; Ohba H; Ishikawa M; Baba Y
    J Nanosci Nanotechnol; 2005 Jun; 5(6):887-94. PubMed ID: 16060148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence Sensor Based on Biosynthetic CdSe/CdS Quantum Dots and Liposome Carrier Signal Amplification for Mercury Detection.
    Zhang Y; Xiao JY; Zhu Y; Tian LJ; Wang WK; Zhu TT; Li WW; Yu HQ
    Anal Chem; 2020 Mar; 92(5):3990-3997. PubMed ID: 32020800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microalgae cultivation for phenolic compounds removal.
    Surkatti R; Al-Zuhair S
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33936-33956. PubMed ID: 30353440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples.
    Ghorbani M; Shams A; Seyedin O; Afshar Lahoori N
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5655-5667. PubMed ID: 29222663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media.
    Xu H; Miao R; Fang Z; Zhong X
    Anal Chim Acta; 2011 Feb; 687(1):82-8. PubMed ID: 21241850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous exposure to nanoplastics and cadmium mitigates microalgae cellular toxicity: Insights from molecular simulation and metabolomics.
    Li H; Lin L; Liu H; Deng X; Wang L; Kuang Y; Lin Z; Liu P; Wang Y; Xu Z
    Environ Int; 2024 Apr; 186():108633. PubMed ID: 38603814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal.
    Ren HY; Liu BF; Kong F; Zhao L; Ren N
    Water Res; 2015 Nov; 85():404-12. PubMed ID: 26364224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future.
    Goswami RK; Agrawal K; Shah MP; Verma P
    Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.