BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31035180)

  • 1. Resource recovery potentials by landfill mining and reclamation in South Korea.
    Yi S
    J Environ Manage; 2019 Jul; 242():178-185. PubMed ID: 31035180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan.
    Sohoo I; Ritzkowski M; Guo J; Sohoo K; Kuchta K
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the characteristics of combustible fraction of legacy waste: A study on energy recovery potential and GHG emission quantification.
    Mankhair RV; Chandel MK
    Environ Res; 2024 Jun; 251(Pt 2):118669. PubMed ID: 38499221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.
    Wolfsberger T; Aldrian A; Sarc R; Hermann R; Höllen D; Budischowsky A; Zöscher A; Ragoßnig A; Pomberger R
    Waste Manag Res; 2015 Nov; 33(11):962-74. PubMed ID: 26347181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.
    Woon KS; Lo IM
    Sci Total Environ; 2013 Aug; 458-460():499-507. PubMed ID: 23697849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential SRF generation from a closed landfill in northern Italy.
    Passamani G; Ragazzi M; Torretta V
    Waste Manag; 2016 Jan; 47(Pt B):157-63. PubMed ID: 26209342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a residual municipal solid waste landfill for prospective 'landfill mining'.
    Faitli J; Nagy S; Romenda R; Gombkötő I; Bokányi L; Barna L
    Waste Manag Res; 2019 Dec; 37(12):1229-1239. PubMed ID: 31659932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life-cycle inventory and impact evaluation of mining municipal solid waste landfills.
    Jain P; Powell JT; Smith JL; Townsend TG; Tolaymat T
    Environ Sci Technol; 2014; 48(5):2920-7. PubMed ID: 24512420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle GHG emissions of MSW landfilling versus Incineration: Expected outcomes based on US landfill gas collection regulations.
    Anshassi M; Smallwood T; Townsend TG
    Waste Manag; 2022 Apr; 142():44-54. PubMed ID: 35176598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic assessment of critical factors for the economic performance of landfill mining in Europe: What drives the economy of landfill mining?
    Laner D; Esguerra JL; Krook J; Horttanainen M; Kriipsalu M; Rosendal RM; Stanisavljević N
    Waste Manag; 2019 Jul; 95():674-686. PubMed ID: 31351655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining.
    Laner D; Cencic O; Svensson N; Krook J
    Environ Sci Technol; 2016 Jul; 50(13):6882-91. PubMed ID: 27282202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction in VOC emissions by intermittent aeration in bioreactor landfills with gas-water joint regulation.
    Chu YX; Wang J; Tian G; He R
    Environ Pollut; 2021 Dec; 290():118059. PubMed ID: 34488158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane emission estimation from landfills in Korea (1978-2004): quantitative assessment of a new approach.
    Kim HS; Yi SM
    J Air Waste Manag Assoc; 2009 Jan; 59(1):70-7. PubMed ID: 19216190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measured gas emissions from four landfills in south africa and some implications for landfill design and methane recovery in semi-arid climates.
    Fourie AB; Morris JW
    Waste Manag Res; 2004 Dec; 22(6):440-53. PubMed ID: 15666447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.
    Santos MM; van Elk AG; Romanel C
    J Environ Manage; 2015 Dec; 164():151-60. PubMed ID: 26363977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.
    Townsend AK; Webber ME
    Waste Manag; 2012 Jul; 32(7):1366-77. PubMed ID: 22425189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.