These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31035222)

  • 1. Functional MRI evidence of the cortico-olivary efferent pathway during active auditory target processing in humans.
    Yakunina N; Tae WS; Kim SS; Nam EC
    Hear Res; 2019 Aug; 379():1-11. PubMed ID: 31035222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds.
    Dewey RS; Francis ST; Guest H; Prendergast G; Millman RE; Plack CJ; Hall DA
    Neuroimage; 2020 Jan; 204():116239. PubMed ID: 31586673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Keeping track of sound objects in space: The contribution of early-stage auditory areas.
    Da Costa S; Clarke S; Crottaz-Herbette S
    Hear Res; 2018 Sep; 366():17-31. PubMed ID: 29643021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of continuous sampling with active noise cancelation and sparse sampling for cortical and subcortical auditory functional MRI.
    Dewey RS; Hall DA; Plack CJ; Francis ST
    Magn Reson Med; 2021 Nov; 86(5):2577-2588. PubMed ID: 34196020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of peripheral auditory activity modulation by the auditory cortex in humans.
    Khalfa S; Bougeard R; Morand N; Veuillet E; Isnard J; Guenot M; Ryvlin P; Fischer C; Collet L
    Neuroscience; 2001; 104(2):347-58. PubMed ID: 11377839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional magnetic resonance imaging of activation in subcortical auditory pathway.
    Yetkin FZ; Roland PS; Mendelsohn DB; Purdy PD
    Laryngoscope; 2004 Jan; 114(1):96-101. PubMed ID: 14710002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography.
    Zhang YT; Geng ZJ; Zhang Q; Li W; Zhang J
    Chin Med J (Engl); 2006 Sep; 119(18):1548-54. PubMed ID: 16996009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of the auditory pathway in rats with 18F-FDG PET activation studies based on different auditory stimuli and reference conditions including cochlea ablation.
    Mamach M; Kessler M; Bankstahl JP; Wilke F; Geworski L; Bengel FM; Kurt S; Berding G
    PLoS One; 2018; 13(10):e0205044. PubMed ID: 30278068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit.
    Aedo C; Terreros G; León A; Delano PH
    PLoS One; 2016; 11(5):e0155991. PubMed ID: 27195498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas.
    Berlot E; Arts R; Smit J; George E; Gulban OF; Moerel M; Stokroos R; Formisano E; De Martino F
    Neuroimage Clin; 2020; 25():102166. PubMed ID: 31958686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Sources of Cholinergic Input to the Superior Olivary Complex.
    Beebe NL; Zhang C; Burger RM; Schofield BR
    Front Neural Circuits; 2021; 15():715369. PubMed ID: 34335196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable Auditory Cortico-Cerebellar Pathways in the Human Brain Estimated by Intrinsic Functional Connectivity.
    Ren J; Hubbard CS; Ahveninen J; Cui W; Li M; Peng X; Luan G; Han Y; Li Y; Shinn AK; Wang D; Li L; Liu H
    Cereb Cortex; 2021 May; 31(6):2898-2912. PubMed ID: 33497437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections from the auditory cortex to the superior olivary complex in guinea pigs.
    Coomes DL; Schofield BR
    Eur J Neurosci; 2004 Apr; 19(8):2188-200. PubMed ID: 15090045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is it still speech? Different processing strategies in learning to discriminate stimuli in the transition from speech to non-speech including feedback evaluation.
    Weis T; Krick CM; Reith W; Lachmann T
    Brain Cogn; 2018 Aug; 125():1-13. PubMed ID: 29800729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus dependence of contralateral dominance in human auditory cortex.
    Gutschalk A; Steinmann I
    Hum Brain Mapp; 2015 Mar; 36(3):883-96. PubMed ID: 25346487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-Based Asymmetry of the Human Auditory System.
    Mišic B; Betzel RF; Griffa A; de Reus MA; He Y; Zuo XN; van den Heuvel MP; Hagmann P; Sporns O; Zatorre RJ
    Cereb Cortex; 2018 Jul; 28(7):2655-2664. PubMed ID: 29722805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BOLD-fMRI in the mouse auditory pathway.
    Blazquez Freches G; Chavarrias C; Shemesh N
    Neuroimage; 2018 Jan; 165():265-277. PubMed ID: 29050909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech-ABR in contralateral noise: A potential tool to evaluate rostral part of the auditory efferent system.
    Lotfi Y; Moossavi A; Javanbakht M; Faghih Zadeh S
    Med Hypotheses; 2019 Nov; 132():109355. PubMed ID: 31604162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional asymmetries of crossed and uncrossed medial olivocochlear efferent pathways in humans.
    Philibert B; Veuillet E; Collet L
    Neurosci Lett; 1998 Sep; 253(2):99-102. PubMed ID: 9774159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional connectivity corresponding to the tonotopic differentiation of the human auditory cortex.
    Yuan G; Liu G; Wei D; Wang G; Li Q; Qi M; Wu S
    Hum Brain Mapp; 2018 May; 39(5):2224-2234. PubMed ID: 29417705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.