These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31035260)

  • 21. High NIR-purity index single-walled carbon nanotubes for electrochemical sensing in microfluidic chips.
    Vilela D; Ansón-Casaos A; Martínez MT; González MC; Escarpa A
    Lab Chip; 2012 May; 12(11):2006-14. PubMed ID: 22532124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoelectric Properties of Thin Films from Sorted Single-Walled Carbon Nanotubes.
    Podlesny B; Kumanek B; Borah A; Yamaguchi R; Shiraki T; Fujigaya T; Janas D
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli.
    Wang X; Mansukhani ND; Guiney LM; Lee JH; Li R; Sun B; Liao YP; Chang CH; Ji Z; Xia T; Hersam MC; Nel AE
    ACS Nano; 2016 Jun; 10(6):6008-19. PubMed ID: 27159184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorting centimetre-long single-walled carbon nanotubes.
    Yu WJ; Chae SH; Vu QA; Lee YH
    Sci Rep; 2016 Aug; 6():30836. PubMed ID: 27476909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes.
    Zhang F; Pan X; Hu Y; Yu L; Chen X; Jiang P; Zhang H; Deng S; Zhang J; Bolin TB; Zhang S; Huang Y; Bao X
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):14861-6. PubMed ID: 23980145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes in Bio-Renewable Solvents Through Main-Chain Engineering of Conjugated Polymers.
    Su EJ; Chang TW; Lin FY; Lu ST; Tsai YT; Khan S; Weng YC; Shih CC
    Small; 2024 Jun; ():e2403651. PubMed ID: 38934537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Single-walled Carbon Nanotube (SWCNT) Composition on Polyfluorene-Based SWCNT Dispersion Selectivity.
    Liang S; Li H; Flavel BS; Adronov A
    Chemistry; 2018 Jul; 24(39):9799-9806. PubMed ID: 29750382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes.
    Yang X; Liu T; Li R; Yang X; Lyu M; Fang L; Zhang L; Wang K; Zhu A; Zhang L; Qiu C; Zhang YZ; Wang X; Peng LM; Yang F; Li Y
    J Am Chem Soc; 2021 Jul; 143(27):10120-10130. PubMed ID: 34105955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.
    Reis WG; Weitz RT; Kettner M; Kraus A; Schwab MG; Tomović Ž; Krupke R; Mikhael J
    Sci Rep; 2016 May; 6():26259. PubMed ID: 27188435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A diameter-selective attack of metallic carbon nanotubes by nitronium ions.
    An KH; Park JS; Yang CM; Jeong SY; Lim SC; Kang C; Son JH; Jeong MS; Lee YH
    J Am Chem Soc; 2005 Apr; 127(14):5196-203. PubMed ID: 15810855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of (9,8) single-walled carbon nanotubes by fluorene-based polymers.
    Si R; Wei L; Wang H; Su D; Mushrif SH; Chen Y
    Chem Asian J; 2014 Mar; 9(3):868-77. PubMed ID: 24376166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents.
    Joo Y; Brady GJ; Arnold MS; Gopalan P
    Langmuir; 2014 Apr; 30(12):3460-6. PubMed ID: 24580418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation.
    Reis WG; Tomović Ž; Weitz RT; Krupke R; Mikhael J
    Sci Rep; 2017 Mar; 7():44812. PubMed ID: 28317942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing carbon nanotube-surfactant interactions with two-dimensional DOSY NMR.
    Shastry TA; Morris-Cohen AJ; Weiss EA; Hersam MC
    J Am Chem Soc; 2013 May; 135(18):6750-3. PubMed ID: 23369051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sorting and decoration of semiconducting single-walled carbon nanotubes
    Luo Y; Maimaiti Y; Maimaitiyiming X; Xie C; Pei T
    RSC Adv; 2021 Jan; 11(5):2898-2904. PubMed ID: 35424260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Etching of surfactant from solution-processed, type-separated carbon nanotubes and impact on device behavior.
    Kane AA; Ford AC; Nissen A; Krafcik KL; Léonard F
    ACS Nano; 2014 Mar; 8(3):2477-85. PubMed ID: 24512110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy.
    Li J; He Y; Han Y; Liu K; Wang J; Li Q; Fan S; Jiang K
    Nano Lett; 2012 Aug; 12(8):4095-101. PubMed ID: 22730928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers.
    Han J; Ji Q; Qiu S; Li H; Zhang S; Jin H; Li Q
    Chem Commun (Camb); 2015 Mar; 51(22):4712-4. PubMed ID: 25692965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition.
    Yu B; Liu C; Hou PX; Tian Y; Li S; Liu B; Li F; Kauppinen EI; Cheng HM
    J Am Chem Soc; 2011 Apr; 133(14):5232-5. PubMed ID: 21410172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.