These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31035263)
21. Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: A promising association for bone tissue engineering in oral reconstruction. Miranda SC; Silva GA; Hell RC; Martins MD; Alves JB; Goes AM Arch Oral Biol; 2011 Jan; 56(1):1-15. PubMed ID: 20887975 [TBL] [Abstract][Full Text] [Related]
22. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126 [TBL] [Abstract][Full Text] [Related]
23. Development of decellularized meniscus extracellular matrix and gelatin/chitosan scaffolds for meniscus tissue engineering. Yu Z; Lili J; Tiezheng Z; Li S; Jianzhuang W; Haichao D; Kedong S; Tianqing L Biomed Mater Eng; 2019; 30(2):125-132. PubMed ID: 30741661 [TBL] [Abstract][Full Text] [Related]
24. Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Lalande C; Miraux S; Derkaoui SM; Mornet S; Bareille R; Fricain JC; Franconi JM; Le Visage C; Letourneur D; Amédée J; Bouzier-Sore AK Eur Cell Mater; 2011 Apr; 21():341-54. PubMed ID: 21484704 [TBL] [Abstract][Full Text] [Related]
25. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Shaltooki M; Dini G; Mehdikhani M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409 [TBL] [Abstract][Full Text] [Related]
28. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372 [TBL] [Abstract][Full Text] [Related]
29. Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering. Tang H; Kankala RK; Wang S; Chen A Sci China Life Sci; 2019 Dec; 62(12):1670-1682. PubMed ID: 31025172 [TBL] [Abstract][Full Text] [Related]
30. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
31. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Maji K; Dasgupta S; Pramanik K; Bissoyi A Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100 [TBL] [Abstract][Full Text] [Related]
32. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation. Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418 [TBL] [Abstract][Full Text] [Related]
33. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. Pazarçeviren AE; Dikmen T; Altunbaş K; Yaprakçı V; Erdemli Ö; Keskin D; Tezcaner A J Tissue Eng Regen Med; 2020 Jan; 14(1):3-15. PubMed ID: 31475790 [TBL] [Abstract][Full Text] [Related]
34. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. Sellgren KL; Ma T J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991 [TBL] [Abstract][Full Text] [Related]
35. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
36. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Pok S; Myers JD; Madihally SV; Jacot JG Acta Biomater; 2013 Mar; 9(3):5630-42. PubMed ID: 23128158 [TBL] [Abstract][Full Text] [Related]
37. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
38. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior. Yoshida M; Turner PR; Ali MA; Cabral JD ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483 [TBL] [Abstract][Full Text] [Related]
39. Osteogenic differentiation of human adipose-derived mesenchymal stem cells in a bisphosphonate-functionalized polycaprolactone/gelatin scaffold. Safari B; Aghazadeh M; Aghanejad A Int J Biol Macromol; 2023 Jun; 241():124573. PubMed ID: 37100325 [TBL] [Abstract][Full Text] [Related]