These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31035320)

  • 1. Cholesterol Trafficking: An Emerging Therapeutic Target for Angiogenesis and Cancer.
    Lyu J; Yang EJ; Shim JS
    Cells; 2019 Apr; 8(5):. PubMed ID: 31035320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.
    Lyu J; Yang EJ; Head SA; Ai N; Zhang B; Wu C; Li RJ; Liu Y; Yang C; Dang Y; Kwon HJ; Ge W; Liu JO; Shim JS
    Cancer Lett; 2017 Nov; 409():91-103. PubMed ID: 28923401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astemizole Inhibits mTOR Signaling and Angiogenesis by Blocking Cholesterol Trafficking.
    Lyu J; Yang EJ; Head SA; Ai N; Zhang B; Wu C; Li RJ; Liu Y; Chakravarty H; Zhang S; Tam KY; Dang Y; Kwon HJ; Ge W; Liu JO; Shim JS
    Int J Biol Sci; 2018; 14(10):1175-1185. PubMed ID: 30123067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells.
    Piao XM; Gao F; Zhu JX; Wang LJ; Zhao X; Li X; Sheng MM; Zhang Y
    Int J Mol Med; 2018 Aug; 42(2):1018-1025. PubMed ID: 29717773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies.
    Maes H; Olmeda D; Soengas MS; Agostinis P
    FEBS J; 2016 Jan; 283(1):25-38. PubMed ID: 26443003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis.
    Head SA; Shi WQ; Yang EJ; Nacev BA; Hong SY; Pasunooti KK; Li RJ; Shim JS; Liu JO
    ACS Chem Biol; 2017 Jan; 12(1):174-182. PubMed ID: 28103683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.
    Shim JS; Li RJ; Lv J; Head SA; Yang EJ; Liu JO
    Cancer Lett; 2015 Jun; 362(1):106-15. PubMed ID: 25799952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective.
    Missiaen R; Morales-Rodriguez F; Eelen G; Carmeliet P
    Vascul Pharmacol; 2017 Mar; 90():8-18. PubMed ID: 28082117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delta-like 4/Notch signaling and its therapeutic implications.
    Yan M; Plowman GD
    Clin Cancer Res; 2007 Dec; 13(24):7243-6. PubMed ID: 18094402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Endothelial SCUBE2 (Signal Peptide-CUB-EGF Domain-Containing Protein 2), a Novel VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) Coreceptor, Suppresses Tumor Angiogenesis.
    Lin YC; Liu CY; Kannagi R; Yang RB
    Arterioscler Thromb Vasc Biol; 2018 May; 38(5):1202-1215. PubMed ID: 29545238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis.
    Rüegg C; Dormond O; Mariotti A
    Biochim Biophys Acta; 2004 Mar; 1654(1):51-67. PubMed ID: 14984767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting angiogenic metabolism in disease.
    Li X; Carmeliet P
    Science; 2018 Mar; 359(6382):1335-1336. PubMed ID: 29567696
    [No Abstract]   [Full Text] [Related]  

  • 13. Tie-1: A potential target for anti-angiogenesis therapy.
    Yang P; Chen N; Jia JH; Gao XJ; Li SH; Cai J; Wang Z
    J Huazhong Univ Sci Technolog Med Sci; 2015 Oct; 35(5):615-622. PubMed ID: 26489611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.
    Dong Y; Zhang T; Li J; Deng H; Song Y; Zhai D; Peng Y; Lu X; Liu M; Zhao Y; Yi Z
    PLoS One; 2014; 9(12):e113830. PubMed ID: 25485753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumour-Endothelial Cell Communications: Important and Indispensable Mediators of Tumour Angiogenesis.
    Lopes-Bastos BM; Jiang WG; Cai J
    Anticancer Res; 2016 Mar; 36(3):1119-26. PubMed ID: 26977007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiangiogenic Effect of Flavonoids and Chalcones: An Update.
    Mirossay L; Varinská L; Mojžiš J
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29271940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting.
    Bikfalvi A; Bicknell R
    Trends Pharmacol Sci; 2002 Dec; 23(12):576-82. PubMed ID: 12457776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classical and non-classical proangiogenic factors as a target of antiangiogenic therapy in tumor microenvironment.
    Marech I; Leporini C; Ammendola M; Porcelli M; Gadaleta CD; Russo E; De Sarro G; Ranieri G
    Cancer Lett; 2016 Sep; 380(1):216-26. PubMed ID: 26238184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double-edged sword?
    Cascone T; Heymach JV
    J Clin Oncol; 2012 Feb; 30(4):441-4. PubMed ID: 22184396
    [No Abstract]   [Full Text] [Related]  

  • 20. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis.
    Latham AM; Kankanala J; Fearnley GW; Gage MC; Kearney MT; Homer-Vanniasinkam S; Wheatcroft SB; Fishwick CW; Ponnambalam S
    PLoS One; 2014; 9(11):e110997. PubMed ID: 25393739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.