These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31035331)

  • 1. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review.
    Yang J; Ching YC; Chuah CH
    Polymers (Basel); 2019 Apr; 11(5):. PubMed ID: 31035331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures.
    Dong Z; Li N; Dong A; Ma B; Yu C; Chu T; Liu Q
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review.
    Kong U; Mohammad Rawi NF; Tay GS
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Delignification.
    Moniruzzaman M; Goto M
    Adv Biochem Eng Biotechnol; 2019; 168():61-77. PubMed ID: 29744542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS).
    Mochane MJ; Magagula SI; Sefadi JS; Mokhena TC
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of biodegradation of lignocellulosic fiber-based composites - A systematic review.
    Rajeshkumar L; Kumar PS; Ramesh M; Sanjay MR; Siengchin S
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127237. PubMed ID: 37804890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renewable Resources and a Recycled Polymer as Raw Materials: Mats from Electrospinning of Lignocellulosic Biomass and PET Solutions.
    Passos de Oliveira Santos R; Fernanda Rossi P; Ramos LA; Frollini E
    Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in lignocellulosic biomass white biotechnology for bioplastics.
    Kawaguchi H; Takada K; Elkasaby T; Pangestu R; Toyoshima M; Kahar P; Ogino C; Kaneko T; Kondo A
    Bioresour Technol; 2022 Jan; 344(Pt B):126165. PubMed ID: 34695585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.
    Ramires EC; Megiatto JD; Gardrat C; Castellan A; Frollini E
    Biotechnol Bioeng; 2010 Nov; 107(4):612-21. PubMed ID: 20589841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on Grafting of Biofibers for Biocomposites.
    Wei L; McDonald AG
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers.
    Youssef AM; Hasanin MS; Abd El-Aziz ME; Darwesh OM
    Heliyon; 2019 Mar; 5(3):e01332. PubMed ID: 30923764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review.
    Idris SN; Amelia TSM; Bhubalan K; Lazim AMM; Zakwan NAMA; Jamaluddin MI; Santhanam R; Amirul AA; Vigneswari S; Ramakrishna S
    Environ Res; 2023 Aug; 231(Pt 1):115988. PubMed ID: 37105296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components.
    Abe MM; Martins JR; Sanvezzo PB; Macedo JV; Branciforti MC; Halley P; Botaro VR; Brienzo M
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Overview of the Antimicrobial Properties of Lignocellulosic Materials.
    Lobo FCM; Franco AR; Fernandes EM; Reis RL
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33804712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers-Processing, Properties, and Applications in Sports Equipment: A Review.
    Wu Y; Gao X; Nguyen TT; Wu J; Guo M; Liu W; Du C
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.
    Zhang L; Peng X; Zhong L; Chua W; Xiang Z; Sun R
    Curr Med Chem; 2019; 26(14):2456-2474. PubMed ID: 28925867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials.
    Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H
    Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A censorious review on the role of natural lignocellulosic fiber waste as a low-cost adsorbent for removal of diverse textile industrial pollutants.
    Babu RS; Prasanna K; Kumar PS
    Environ Res; 2022 Dec; 215(Pt 1):114183. PubMed ID: 36063910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignocellulosic Fibers from Renewable Resources Using Green Chemistry for a Circular Economy.
    Salem KS; Naithani V; Jameel H; Lucia L; Pal L
    Glob Chall; 2021 Feb; 5(2):2000065. PubMed ID: 33552552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.