These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 31035357)
1. Effectiveness Analysis of Systematic Combined Sewer Overflow Control Schemes in the Sponge City Pilot Area of Beijing. Gong Y; Chen Y; Yu L; Li J; Pan X; Shen Z; Xu X; Qiu Q Int J Environ Res Public Health; 2019 Apr; 16(9):. PubMed ID: 31035357 [TBL] [Abstract][Full Text] [Related]
2. Connecting blue-green infrastructure elements to reduce combined sewer overflows. Cavadini GB; Rodriguez M; Cook LM J Environ Manage; 2024 Aug; 365():121465. PubMed ID: 38901320 [TBL] [Abstract][Full Text] [Related]
3. Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China. Liao ZL; Zhang GQ; Wu ZH; He Y; Chen H Water Sci Technol; 2015; 71(8):1136-42. PubMed ID: 25909722 [TBL] [Abstract][Full Text] [Related]
4. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo. Yu Y; Kojima K; An K; Furumai H Water Sci Technol; 2013; 68(3):544-51. PubMed ID: 23925181 [TBL] [Abstract][Full Text] [Related]
5. Identification of sewer pipes to be cleaned for reduction of CSO pollutant load. Nagaiwa A; Settsu K; Nakajima F; Furumai H Water Sci Technol; 2007; 55(4):75-83. PubMed ID: 17425074 [TBL] [Abstract][Full Text] [Related]
6. Characterization and sources apportionment of overflow pollution in urban separate stormwater systems inappropriately connected with sewage. Li Y; Zhou Y; Wang H; Jiang H; Yue Z; Zheng K; Wu B; Banahene P J Environ Manage; 2022 Feb; 303():114231. PubMed ID: 34906833 [TBL] [Abstract][Full Text] [Related]
7. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs). Fu X; Goddard H; Wang X; Hopton ME J Environ Manage; 2019 Apr; 236():571-580. PubMed ID: 30771676 [TBL] [Abstract][Full Text] [Related]
8. Evaluating Sponge City volume capture ratio at the catchment scale using SWMM. Randall M; Sun F; Zhang Y; Jensen MB J Environ Manage; 2019 Sep; 246():745-757. PubMed ID: 31226528 [TBL] [Abstract][Full Text] [Related]
9. Hydrological modelling of green and grey roofs in cold climate with the SWMM model. Hamouz V; Muthanna TM J Environ Manage; 2019 Nov; 249():109350. PubMed ID: 31415926 [TBL] [Abstract][Full Text] [Related]
10. Effects of low impact development on the stormwater runoff and pollution control. Fan G; Lin R; Wei Z; Xiao Y; Shangguan H; Song Y Sci Total Environ; 2022 Jan; 805():150404. PubMed ID: 34818793 [TBL] [Abstract][Full Text] [Related]
11. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements. Ahm M; Thorndahl S; Nielsen JE; Rasmussen MR Water Sci Technol; 2016 Dec; 74(11):2683-2696. PubMed ID: 27973373 [TBL] [Abstract][Full Text] [Related]
12. An application of Austrian legal requirements for CSO emissions. Kleidorfer M; Rauch W Water Sci Technol; 2011; 64(5):1081-8. PubMed ID: 22214054 [TBL] [Abstract][Full Text] [Related]
13. Novel design of volume of detention tanks assisted by a multi-source pollution overflow model towards pollution control in urban drainage basins. Xu Z; Hua W; Xiong L; He Z Environ Sci Pollut Res Int; 2020 Apr; 27(11):12781-12791. PubMed ID: 32008197 [TBL] [Abstract][Full Text] [Related]
14. Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow. Yu D; Dian L; Hai Y; Randall MT; Liu L; Liu J; Zhang J; Zheng X; Wei Y J Environ Manage; 2022 Feb; 303():114268. PubMed ID: 34894491 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of effectiveness of combined sewer overflow control measures by operational data. Schroeder K; Riechel M; Matzinger A; Rouault P; Sonnenberg H; Pawlowsky-Reusing E; Gnirss R Water Sci Technol; 2011; 63(2):325-30. PubMed ID: 21252438 [TBL] [Abstract][Full Text] [Related]
16. Hydrological reduction and control effect evaluation of sponge city construction based on one-way coupling model of SWMM-FVCOM: A case in university campus. Tan Y; Cheng Q; Lyu F; Liu F; Liu L; Su Y; Yuan S; Xiao W; Liu Z; Chen Y J Environ Manage; 2024 Jan; 349():119599. PubMed ID: 37992663 [TBL] [Abstract][Full Text] [Related]
17. Assessing stormwater control measures using modelling and a multi-criteria approach. Radinja M; Comas J; Corominas L; Atanasova N J Environ Manage; 2019 Aug; 243():257-268. PubMed ID: 31102893 [TBL] [Abstract][Full Text] [Related]
18. Assessing the impact of climate change on Combined Sewer Overflows based on small time step future rainfall timeseries and long-term continuous sewer network modelling. Gogien F; Dechesne M; Martinerie R; Lipeme Kouyi G Water Res; 2023 Feb; 230():119504. PubMed ID: 36621275 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the SWAT model for creating efficient rainwater harvesting and reuse strategies to improve water resources management. Li S; Liu Y; Her Y; Nguyen AH J Environ Manage; 2024 Aug; 366():121829. PubMed ID: 39018853 [TBL] [Abstract][Full Text] [Related]
20. High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators. Olds HT; Corsi SR; Dila DK; Halmo KM; Bootsma MJ; McLellan SL PLoS Med; 2018 Jul; 15(7):e1002614. PubMed ID: 30040843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]