These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31035696)

  • 1. Application of NiTi in Assistive and Rehabilitation Devices: A Review.
    Nematollahi M; Baghbaderani KS; Amerinatanzi A; Zamanian H; Elahinia M
    Bioengineering (Basel); 2019 Apr; 6(2):. PubMed ID: 31035696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of NiTi shape memory alloys in quality of life improvement through medical advancements: A comprehensive review.
    Nair VS; Nachimuthu R
    Proc Inst Mech Eng H; 2022 Jul; 236(7):923-950. PubMed ID: 35486134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.
    McMahon RE; Ma J; Verkhoturov SV; Munoz-Pinto D; Karaman I; Rubitschek F; Maier HJ; Hahn MS
    Acta Biomater; 2012 Jul; 8(7):2863-70. PubMed ID: 22465573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable shape memory alloys: Progress and prospects.
    Wang Y; Venezuela J; Dargusch M
    Biomaterials; 2021 Dec; 279():121215. PubMed ID: 34736144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects.
    Kim MS; Heo JK; Rodrigue H; Lee HT; Pané S; Han MW; Ahn SH
    Adv Mater; 2023 Aug; 35(33):e2208517. PubMed ID: 37074738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of shape memory alloys for neurology and neuromuscular rehabilitation.
    Pittaccio S; Garavaglia L; Ceriotti C; Passaretti F
    J Funct Biomater; 2015 May; 6(2):328-44. PubMed ID: 26023790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials.
    Yuan B; Zhu M; Chung CY
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new look at biomedical Ti-based shape memory alloys.
    Biesiekierski A; Wang J; Gepreel MA; Wen C
    Acta Biomater; 2012 May; 8(5):1661-9. PubMed ID: 22326786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies and applications of NiTi shape memory alloys in the medical field in China.
    Dai K; Chu Y
    Biomed Mater Eng; 1996; 6(4):233-40. PubMed ID: 8980832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioperformance of shape memory alloy single crystals.
    Yahia L; Manceur A; Chaffraix P
    Biomed Mater Eng; 2006; 16(2):101-18. PubMed ID: 16477119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosthetics, orthotics, and assistive devices. 3. Prosthetics.
    Esquenazi A; Leonard JA; Meier RH; Hicks JE; Fisher SV; Nelson VS
    Arch Phys Med Rehabil; 1989 May; 70(5-S):S206-9. PubMed ID: 2655560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0.
    Srivastava R; Alsamhi SH; Murray N; Devine D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties and medical applications of shape memory alloys.
    Tarniţă D; Tarniţă DN; Bîzdoacă N; Mîndrilă I; Vasilescu M
    Rom J Morphol Embryol; 2009; 50(1):15-21. PubMed ID: 19221641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 35 Hz shape memory alloy actuator with bending-twisting mode.
    Song SH; Lee JY; Rodrigue H; Choi IS; Kang YJ; Ahn SH
    Sci Rep; 2016 Feb; 6():21118. PubMed ID: 26892438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Neural Network Modeling of Shape Memory Alloys.
    Hmede R; Chapelle F; Lapusta Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.
    Colorado J; Barrientos A; Rossi C; Bahlman JW; Breuer KS
    Bioinspir Biomim; 2012 Sep; 7(3):036006. PubMed ID: 22535882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart portable rehabilitation devices.
    Mavroidis C; Nikitczuk J; Weinberg B; Danaher G; Jensen K; Pelletier P; Prugnarola J; Stuart R; Arango R; Leahey M; Pavone R; Provo A; Yasevac D
    J Neuroeng Rehabil; 2005 Jul; 2():18. PubMed ID: 16011801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.
    Es-Souni M; Es-Souni M; Fischer-Brandies H
    Anal Bioanal Chem; 2005 Feb; 381(3):557-67. PubMed ID: 15660223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and development of platform ankle rehabilitation robot with Shape Memory Alloy based actuator.
    Hau CT; Gouwanda D; Gopalai AA; Yee LC; Akhtar Binti Hanapiah F
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():946-949. PubMed ID: 29060029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Soft Five-Fingered Hand Actuated by Shape Memory Alloy Wires: Design, Manufacturing, and Evaluation.
    Simone F; Rizzello G; Seelecke S; Motzki P
    Front Robot AI; 2020; 7():608841. PubMed ID: 33501365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.