BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31035760)

  • 1. Design Principles for Thermoresponsive Core-Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology.
    Reimhult E; Schroffenegger M; Lassenberger A
    Langmuir; 2019 Jun; 35(22):7092-7104. PubMed ID: 31035760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles.
    Kurzhals S; Gal N; Zirbs R; Reimhult E
    Nanoscale; 2017 Feb; 9(8):2793-2805. PubMed ID: 28155937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive Core-Shell Nanoparticles: Does Core Size Matter?
    Schroffenegger M; Reimhult E
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size.
    Willinger M; Reimhult E
    J Phys Chem B; 2021 Jul; 125(25):7009-7023. PubMed ID: 34156854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.
    Kurzhals S; Zirbs R; Reimhult E
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19342-52. PubMed ID: 26270412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry.
    Gal N; Schroffenegger M; Reimhult E
    J Phys Chem B; 2018 Jun; 122(22):5820-5834. PubMed ID: 29726682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell Structure of Monodisperse Poly(ethylene glycol)-Grafted Iron Oxide Nanoparticles Studied by Small-Angle X-ray Scattering.
    Grünewald TA; Lassenberger A; van Oostrum PD; Rennhofer H; Zirbs R; Capone B; Vonderhaid I; Amenitsch H; Lichtenegger HC; Reimhult E
    Chem Mater; 2015 Jul; 27(13):4763-4771. PubMed ID: 26321792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting.
    Kurzhals S; Gal N; Zirbs R; Reimhult E
    J Colloid Interface Sci; 2017 Aug; 500():321-332. PubMed ID: 28412639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin.
    Leitner NS; Schroffenegger M; Reimhult E
    ACS Appl Bio Mater; 2021 Jan; 4(1):795-806. PubMed ID: 33490885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Chain Molecular Weight and Hofmeister Series Ions in Thermal Aggregation of Poly(2-Isopropyl-2-Oxazoline) Grafted Nanoparticles.
    Schroffenegger M; Zirbs R; Kurzhals S; Reimhult E
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport Through Cell Barrier Layers Regardless of Shear Flow and Particle Size.
    Gal N; Charwat V; Städler B; Reimhult E
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4355-4365. PubMed ID: 33438401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Grafted Block Copolymer Structure on Thermoresponsiveness of Superparamagnetic Core-Shell Nanoparticles.
    Kurzhals S; Schroffenegger M; Gal N; Zirbs R; Reimhult E
    Biomacromolecules; 2018 May; 19(5):1435-1444. PubMed ID: 29161516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of gold@polymer core-shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer.
    Zheng P; Jiang X; Zhang X; Zhang W; Shi L
    Langmuir; 2006 Oct; 22(22):9393-6. PubMed ID: 17042559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggered Release from Thermoresponsive Polymersomes with Superparamagnetic Membranes.
    Bixner O; Kurzhals S; Virk M; Reimhult E
    Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt-grafting for the synthesis of core-shell nanoparticles with ultra-high dispersant density.
    Zirbs R; Lassenberger A; Vonderhaid I; Kurzhals S; Reimhult E
    Nanoscale; 2015 Jul; 7(25):11216-25. PubMed ID: 26061616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the causes of thermal hysteresis using tunable
    Blackman LD; Gibson MI; O'Reilly RK
    Polym Chem; 2017 Jan; 8(1):233-244. PubMed ID: 28496523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery.
    Peralta ME; Jadhav SA; Magnacca G; Scalarone D; Mártire DO; Parolo ME; Carlos L
    J Colloid Interface Sci; 2019 May; 544():198-205. PubMed ID: 30844568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes and Cells.
    Gal N; Lassenberger A; Herrero-Nogareda L; Scheberl A; Charwat V; Kasper C; Reimhult E
    ACS Biomater Sci Eng; 2017 Mar; 3(3):249-259. PubMed ID: 33465924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes.
    Morgese G; Shirmardi Shaghasemi B; Causin V; Zenobi-Wong M; Ramakrishna SN; Reimhult E; Benetti EM
    Angew Chem Int Ed Engl; 2017 Apr; 56(16):4507-4511. PubMed ID: 28294482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.