BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31035760)

  • 41. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermoreversible Surface Polymer Patches: A Cryogenic Transmission Electron Microscopy Investigation.
    Rossner C; Letofsky-Papst I; Fery A; Lederer A; Kothleitner G
    Langmuir; 2018 Jul; 34(29):8622-8628. PubMed ID: 29958497
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ordering nanoparticles with polymer brushes.
    Cheng S; Stevens MJ; Grest GS
    J Chem Phys; 2017 Dec; 147(22):224901. PubMed ID: 29246078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile strategy for synthesis of silica/polymer hybrid hollow nanoparticles with channels.
    Wu C; Wang X; Zhao L; Gao Y; Ma R; An Y; Shi L
    Langmuir; 2010 Dec; 26(23):18503-7. PubMed ID: 21062000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High stability of thermoresponsive polymer-brush-grafted silica beads as chromatography matrices.
    Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1998-2008. PubMed ID: 22452297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: controlling the collective magnetic properties.
    Schmidtke C; Eggers R; Zierold R; Feld A; Kloust H; Wolter C; Ostermann J; Merkl JP; Schotten T; Nielsch K; Weller H
    Langmuir; 2014 Sep; 30(37):11190-6. PubMed ID: 25152249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocompatible Glyconanoparticles by Grafting Sophorolipid Monolayers on Monodispersed Iron Oxide Nanoparticles.
    Lassenberger A; Scheberl A; Batchu KC; Cristiglio V; Grillo I; Hermida-Merino D; Reimhult E; Baccile N
    ACS Appl Bio Mater; 2019 Jul; 2(7):3095-3107. PubMed ID: 35030801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.
    Sommertune J; Sugunan A; Ahniyaz A; Bejhed RS; Sarwe A; Johansson C; Balceris C; Ludwig F; Posth O; Fornara A
    Int J Mol Sci; 2015 Aug; 16(8):19752-68. PubMed ID: 26307966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local Structure and Relaxation Dynamics in the Brush of Polymer-Grafted Silica Nanoparticles.
    Wei Y; Xu Y; Faraone A; Hore MJA
    ACS Macro Lett; 2018 Jun; 7(6):699-704. PubMed ID: 35632950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy.
    Wydra RJ; Kruse AM; Bae Y; Anderson KW; Hilt JZ
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4660-6. PubMed ID: 24094173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Morphology of Polymer Brushes in the Presence of Attractive Nanoparticles: Effects of Temperature.
    Eskandari Nasrabad A; Laghaei R; Coalson RD
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal Switching of Thermoresponsive Polymer Aqueous Solutions.
    Li C; Ma Y; Tian Z
    ACS Macro Lett; 2018 Jan; 7(1):53-58. PubMed ID: 35610916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell.
    Karg M; Wellert S; Pastoriza-Santos I; Lapp A; Liz-Marzán LM; Hellweg T
    Phys Chem Chem Phys; 2008 Nov; 10(44):6708-16. PubMed ID: 18989484
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Poly(ionic liquid)s Based Brush Type Nanomotor.
    Men Y; Tu Y; Li W; Peng F; Wilson DA
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Particles decorated by an ionizable thermoresponsive polymer brush in water: experiments and self-consistent field modeling.
    Alves SP; Pinheiro JP; Farinha JP; Leermakers FA
    J Phys Chem B; 2014 Mar; 118(11):3192-206. PubMed ID: 24559318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.
    Hickey RJ; Haynes AS; Kikkawa JM; Park SJ
    J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile synthesis of gold core-polymer shell responsive particles.
    D'Souza-Mathew M; Cayre OJ; Hunter TN; Biggs SR
    J Colloid Interface Sci; 2013 Oct; 407():187-95. PubMed ID: 23891444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.