These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31035764)

  • 41. High Internal Quantum Efficiency Ultraviolet Emission from Phase-Transition Cubic GaN Integrated on Nanopatterned Si(100).
    Liu R; Schaller R; Chen CQ; Bayram C
    ACS Photonics; 2018; 5(3):955-963. PubMed ID: 30775407
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polarity-Induced Selective Area Epitaxy of GaN Nanowires.
    de Souza Schiaber Z; Calabrese G; Kong X; Trampert A; Jenichen B; Dias da Silva JH; Geelhaar L; Brandt O; Fernández-Garrido S
    Nano Lett; 2017 Jan; 17(1):63-70. PubMed ID: 28073259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact.
    Tchernycheva M; Lavenus P; Zhang H; Babichev AV; Jacopin G; Shahmohammadi M; Julien FH; Ciechonski R; Vescovi G; Kryliouk O
    Nano Lett; 2014 May; 14(5):2456-65. PubMed ID: 24742151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical properties of GaN-based nanowires containing a single Al(0.14)Ga(0.86)N/GaN quantum disc.
    Jacopin G; Rigutti L; Teubert J; Julien FH; Furtmayr F; Komninou P; Kehagias T; Eickhoff M; Tchernycheva M
    Nanotechnology; 2013 Mar; 24(12):125201. PubMed ID: 23459100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and optical properties of disc-in-wire InGaN/GaN LEDs.
    Yan L; Jahangir S; Wight SA; Nikoobakht B; Bhattacharya P; Millunchick JM
    Nano Lett; 2015 Mar; 15(3):1535-9. PubMed ID: 25658444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.
    Nogales E; Méndez B; Piqueras J
    Nanotechnology; 2008 Jan; 19(3):035713. PubMed ID: 21817598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yellow luminescence of polar and nonpolar GaN nanowires on r-plane sapphire by metal organic chemical vapor deposition.
    Xu S; Hao Y; Zhang J; Jiang T; Yang L; Lu X; Lin Z
    Nano Lett; 2013 Aug; 13(8):3654-7. PubMed ID: 23899164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction.
    Naresh-Kumar G; Vilalta-Clemente A; Jussila H; Winkelmann A; Nolze G; Vespucci S; Nagarajan S; Wilkinson AJ; Trager-Cowan C
    Sci Rep; 2017 Sep; 7(1):10916. PubMed ID: 28883500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. p-GaN/n-ZnO heterojunction nanowires: optoelectronic properties and the role of interface polarity.
    Schuster F; Laumer B; Zamani RR; Magén C; Morante JR; Arbiol J; Stutzmann M
    ACS Nano; 2014 May; 8(5):4376-84. PubMed ID: 24720603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of AlGaN undershell on the cathodoluminescence properties of coaxial GaInN/GaN multiple-quantum-shells nanowires.
    Lu W; Sone N; Goto N; Iida K; Suzuki A; Han DP; Iwaya M; Tekeuchi T; Kamiyama S; Akasaki I
    Nanoscale; 2019 Oct; 11(40):18746-18757. PubMed ID: 31591631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Absence of Quantum-Confined Stark Effect in GaN Quantum Disks Embedded in (Al,Ga)N Nanowires Grown by Molecular Beam Epitaxy.
    Sinito C; Corfdir P; Pfüller C; Gao G; Bartolomé J; Kölling S; Rodil Doblado A; Jahn U; Lähnemann J; Auzelle T; Zettler JK; Flissikowski T; Koenraad P; Grahn HT; Geelhaar L; Fernández-Garrido S; Brandt O
    Nano Lett; 2019 Sep; 19(9):5938-5948. PubMed ID: 31385709
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire.
    Yang YH; Chen XY; Feng Y; Yang GW
    Nano Lett; 2007 Dec; 7(12):3879-83. PubMed ID: 18001107
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.
    Chen HL; Himwas C; Scaccabarozzi A; Rale P; Oehler F; Lemaître A; Lombez L; Guillemoles JF; Tchernycheva M; Harmand JC; Cattoni A; Collin S
    Nano Lett; 2017 Nov; 17(11):6667-6675. PubMed ID: 29035545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bias-Controlled Optical Transitions in GaN/AlN Nanowire Heterostructures.
    Müßener J; Hille P; Grieb T; Schörmann J; Teubert J; Monroy E; Rosenauer A; Eickhoff M
    ACS Nano; 2017 Sep; 11(9):8758-8767. PubMed ID: 28771318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatially-resolved luminescence and crystal structure of single core-shell nanowires measured in the as-grown geometry.
    AlHassan A; Lähnemann J; Leake S; Küpers H; Niehle M; Bahrami D; Bertram F; Lewis RB; Davtyan A; Schülli TU; Geelhaar L; Pietsch U
    Nanotechnology; 2020 May; 31(21):214002. PubMed ID: 32050166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence.
    Xue H; Pan N; Li M; Wu Y; Wang X; Hou JG
    Nanotechnology; 2010 May; 21(21):215701. PubMed ID: 20431205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic structure of defects in GaN:Mg grown with Ga polarity.
    Liliental-Weber Z; Tomaszewicz T; Zakharov D; Jasinski J; O'Keefe MA
    Phys Rev Lett; 2004 Nov; 93(20):206102. PubMed ID: 15600942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical elasticity of vapour-liquid-solid grown GaN nanowires.
    Chen Y; Stevenson I; Pouy R; Wang L; McIlroy DN; Pounds T; Grant Norton M; Eric Aston D
    Nanotechnology; 2007 Apr; 18(13):135708. PubMed ID: 21730393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of Mg doping on GaN nanowires.
    Zhang D; Xue C; Zhuang H; Sun H; Cao Y; Huang Y; Wang Z; Wang Y
    Chemphyschem; 2009 Feb; 10(3):571-5. PubMed ID: 19142926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate.
    Borysiuk J; Zytkiewicz ZR; Sobanska M; Wierzbicka A; Klosek K; Korona KP; Perkowska PS; Reszka A
    Nanotechnology; 2014 Apr; 25(13):135610. PubMed ID: 24598248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.