BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31035967)

  • 1. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells.
    Klicks J; Maßlo C; Kluth A; Rudolf R; Hafner M
    BMC Cancer; 2019 Apr; 19(1):402. PubMed ID: 31035967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Three-Dimensional
    Swaminathan S; Cranston AN; Clyne AM
    Tissue Eng Part C Methods; 2019 Oct; 25(10):609-618. PubMed ID: 31441384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery.
    Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes.
    Costea DE; Kulasekara K; Neppelberg E; Johannessen AC; Vintermyr OK
    Am J Pathol; 2006 Jun; 168(6):1889-97. PubMed ID: 16723704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model.
    Haridas P; McGovern JA; McElwain SDL; Simpson MJ
    PeerJ; 2017; 5():e3754. PubMed ID: 28890854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Spheroid Cell Death Using Fluorescence Staining and Convolutional Neural Networks.
    Srisongkram T; Syahid NF; Piyasawetkul T; Thirawatthanasak P; Khamtang P; Sawasnopparat N; Tookkane D; Weerapreeyakul N; Puthongking P
    Chem Res Toxicol; 2023 Dec; 36(12):1980-1989. PubMed ID: 38052002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of 3D melanoma models using an assembloid-based approach.
    Rodrigues DB; Moreira HR; Jarnalo M; Horta R; Marques AP; Reis RL; Pirraco RP
    Acta Biomater; 2024 Apr; 178():93-110. PubMed ID: 38382833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-clinical modeling of cutaneous melanoma.
    Rebecca VW; Somasundaram R; Herlyn M
    Nat Commun; 2020 Jun; 11(1):2858. PubMed ID: 32504051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models.
    Schäfer MEA; Klicks J; Hafner M; Rudolf R
    Methods Mol Biol; 2021; 2265():173-183. PubMed ID: 33704714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens.
    Nuernberg E; Bruch R; Hafner M; Rudolf R; Vitacolonna M
    Methods Mol Biol; 2024; 2764():311-334. PubMed ID: 38393603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy.
    Nomdedeu-Sancho G; Gorkun A; Mahajan N; Willson K; Schaaf CR; Votanopoulos KI; Atala A; Soker S
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of dermal fibroblasts by human neutrophil peptides.
    Niwetbowornchai N; Chaisirirat T; Sriswasdi S; Saithong S; Filbertine G; Wright HL; Edwards SW; Virakul S; Chiewchengchol D
    Sci Rep; 2023 Oct; 13(1):17499. PubMed ID: 37840103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preclinical model of cutaneous melanoma based on reconstructed human epidermis.
    Leikeim A; Wußmann M; Schmidt FF; Neto NGB; Benz F; Tiltmann K; Junger C; Monaghan MG; Schilling B; Groeber-Becker FK
    Sci Rep; 2022 Sep; 12(1):16269. PubMed ID: 36175453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From simplicity to complexity in current melanoma models.
    Michielon E; de Gruijl TD; Gibbs S
    Exp Dermatol; 2022 Dec; 31(12):1818-1836. PubMed ID: 36103206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wound healing, fibroblast heterogeneity, and fibrosis.
    Talbott HE; Mascharak S; Griffin M; Wan DC; Longaker MT
    Cell Stem Cell; 2022 Aug; 29(8):1161-1180. PubMed ID: 35931028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting: An Enabling Technology to Understand Melanoma.
    Fernandes S; Vyas C; Lim P; Pereira RF; Virós A; Bártolo P
    Cancers (Basel); 2022 Jul; 14(14):. PubMed ID: 35884596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness.
    Cabaço LC; Tomás A; Pojo M; Barral DC
    Front Oncol; 2022; 12():887366. PubMed ID: 35619912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Melanoma Cocultures as Improved Models for Nanoparticle-Mediated Delivery of RNA to Tumors.
    Schäfer MEA; Keller F; Schumacher J; Haas H; Vascotto F; Sahin U; Hafner M; Rudolf R
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a 3D melanoma model and visualization of doxorubicin uptake by fluorescence imaging.
    Baciu DD; Dumitrașcu AM; Vasile V; Palade B; Sălăgeanu A
    In Vitro Cell Dev Biol Anim; 2022 Jan; 58(1):44-53. PubMed ID: 34981409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of Benzenesulfonamide-Bearing Imidazole Derivatives Activity in Triple-Negative Breast Cancer and Melanoma 2D and 3D Cell Cultures.
    Balandis B; Mickevičius V; Petrikaitė V
    Pharmaceuticals (Basel); 2021 Nov; 14(11):. PubMed ID: 34832940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.