These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31036063)

  • 1. CRISPR enables directed evolution in plants.
    Zhang Y; Qi Y
    Genome Biol; 2019 Apr; 20(1):83. PubMed ID: 31036063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors.
    Butt H; Eid A; Momin AA; Bazin J; Crespi M; Arold ST; Mahfouz MM
    Genome Biol; 2019 Apr; 20(1):73. PubMed ID: 31036069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice.
    Tang Y; Abdelrahman M; Li J; Wang F; Ji Z; Qi H; Wang C; Zhao K
    Plant Biotechnol J; 2021 Apr; 19(4):642-644. PubMed ID: 33217139
    [No Abstract]   [Full Text] [Related]  

  • 5. A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice.
    Wang C; Shen L; Fu Y; Yan C; Wang K
    J Genet Genomics; 2015 Dec; 42(12):703-6. PubMed ID: 26743988
    [No Abstract]   [Full Text] [Related]  

  • 6. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice.
    Liu X; Qin R; Li J; Liao S; Shan T; Xu R; Wu D; Wei P
    Plant Biotechnol J; 2020 Sep; 18(9):1845-1847. PubMed ID: 31985873
    [No Abstract]   [Full Text] [Related]  

  • 7. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 8. CRISPR-Cas12a enables efficient biallelic gene targeting in rice.
    Li S; Zhang Y; Xia L; Qi Y
    Plant Biotechnol J; 2020 Jun; 18(6):1351-1353. PubMed ID: 31730252
    [No Abstract]   [Full Text] [Related]  

  • 9. Foxtail Millet: A New Model for C4 Plants.
    Peng R; Zhang B
    Trends Plant Sci; 2021 Mar; 26(3):199-201. PubMed ID: 33358112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Based Directed Evolution for Crop Improvement.
    Butt H; Zaidi SS; Hassan N; Mahfouz M
    Trends Biotechnol; 2020 Mar; 38(3):236-240. PubMed ID: 31477243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Based Genome Editing Using Rice Zygotes.
    Toda E; Okamoto T
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20111. PubMed ID: 32515907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice.
    Li S; Zhang X; Wang W; Guo X; Wu Z; Du W; Zhao Y; Xia L
    Mol Plant; 2018 Jul; 11(7):995-998. PubMed ID: 29567453
    [No Abstract]   [Full Text] [Related]  

  • 14. Targeted base editing in rice with CRISPR/ScCas9 system.
    Wang M; Xu Z; Gosavi G; Ren B; Cao Y; Kuang Y; Zhou C; Spetz C; Yan F; Zhou X; Zhou H
    Plant Biotechnol J; 2020 Aug; 18(8):1645-1647. PubMed ID: 31916673
    [No Abstract]   [Full Text] [Related]  

  • 15. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas12b enables efficient plant genome engineering.
    Ming M; Ren Q; Pan C; He Y; Zhang Y; Liu S; Zhong Z; Wang J; Malzahn AA; Wu J; Zheng X; Zhang Y; Qi Y
    Nat Plants; 2020 Mar; 6(3):202-208. PubMed ID: 32170285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A piggyBac-mediated transgenesis system for the temporary expression of CRISPR/Cas9 in rice.
    Nishizawa-Yokoi A; Toki S
    Plant Biotechnol J; 2021 Jul; 19(7):1386-1395. PubMed ID: 33529430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat.
    Nazir R; Mandal S; Mitra S; Ghorai M; Das N; Jha NK; Majumder M; Pandey DK; Dey A
    Physiol Plant; 2022 Mar; 174(2):e13642. PubMed ID: 35099818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.