These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31036063)

  • 21. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome editing in rice and wheat using the CRISPR/Cas system.
    Shan Q; Wang Y; Li J; Gao C
    Nat Protoc; 2014 Oct; 9(10):2395-410. PubMed ID: 25232936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Based Assessment of Gene Specialization in the Gibberellin Metabolic Pathway in Rice.
    Chen X; Tian X; Xue L; Zhang X; Yang S; Traw MB; Huang J
    Plant Physiol; 2019 Aug; 180(4):2091-2105. PubMed ID: 31160507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytically Enhanced Cas9 through Directed Protein Evolution.
    Hand TH; Roth MO; Smith CL; Shiel E; Klein KN; Gilbert DM; Li H
    CRISPR J; 2021 Apr; 4(2):223-232. PubMed ID: 33876948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiplex CRISPR Mutagenesis of the Serine/Arginine-Rich (SR) Gene Family in Rice.
    Butt H; Piatek A; Li L; S N Reddy A; M Mahfouz M
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31394891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.
    Li J; Meng X; Zong Y; Chen K; Zhang H; Liu J; Li J; Gao C
    Nat Plants; 2016 Sep; 2():16139. PubMed ID: 27618611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations.
    Wang G; Wang C; Lu G; Wang W; Mao G; Habben JE; Song C; Wang J; Chen J; Gao Y; Liu J; Greene TW
    Plant Mol Biol; 2020 Sep; 104(1-2):137-150. PubMed ID: 32623622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A CRISPR Way for Fast-Forward Crop Domestication.
    Khan MZ; Zaidi SS; Amin I; Mansoor S
    Trends Plant Sci; 2019 Apr; 24(4):293-296. PubMed ID: 30738789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922.
    Wang F; Wang C; Liu P; Lei C; Hao W; Gao Y; Liu YG; Zhao K
    PLoS One; 2016; 11(4):e0154027. PubMed ID: 27116122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering disease resistant plants through CRISPR-Cas9 technology.
    Tyagi S; Kumar R; Kumar V; Won SY; Shukla P
    GM Crops Food; 2021 Jan; 12(1):125-144. PubMed ID: 33079628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding.
    Biswas S; Tian J; Li R; Chen X; Luo Z; Chen M; Zhao X; Zhang D; Persson S; Yuan Z; Shi J
    J Genet Genomics; 2020 May; 47(5):273-280. PubMed ID: 32684419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of the CRISPR-Cas system for efficient genome engineering in plants.
    Mao Y; Zhang H; Xu N; Zhang B; Gou F; Zhu JK
    Mol Plant; 2013 Nov; 6(6):2008-11. PubMed ID: 23963532
    [No Abstract]   [Full Text] [Related]  

  • 37. CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.).
    Khan I; Khan S; Zhang Y; Zhou J; Akhoundian M; Jan SA
    Mol Biol Rep; 2021 Apr; 48(4):3605-3615. PubMed ID: 33950408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems.
    Zhang Y; Ren Q; Tang X; Liu S; Malzahn AA; Zhou J; Wang J; Yin D; Pan C; Yuan M; Huang L; Yang H; Zhao Y; Fang Q; Zheng X; Tian L; Cheng Y; Le Y; McCoy B; Franklin L; Selengut JD; Mount SM; Que Q; Zhang Y; Qi Y
    Nat Commun; 2021 Mar; 12(1):1944. PubMed ID: 33782402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing Rice Mutants Using CRISPR/Cas9-Based Genome Editing Technology.
    Xu K; Li Y
    Methods Mol Biol; 2022; 2400():11-19. PubMed ID: 34905186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creating Large Chromosomal Deletions in Rice Using CRISPR/Cas9.
    Li R; Char SN; Yang B
    Methods Mol Biol; 2019; 1917():47-61. PubMed ID: 30610627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.