BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31036199)

  • 1. Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells.
    Tamashevski A; Harmaza Y; Viter R; Jevdokimovs D; Poplausks R; Slobozhanina E; Mikoliunaite L; Erts D; Ramanaviciene A; Ramanavicius A
    Talanta; 2019 Aug; 200():378-386. PubMed ID: 31036199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods.
    Tamashevski A; Harmaza Y; Slobozhanina E; Viter R; Iatsunskyi I
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32664437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A.
    Viter R; Savchuk M; Iatsunskyi I; Pietralik Z; Starodub N; Shpyrka N; Ramanaviciene A; Ramanavicius A
    Biosens Bioelectron; 2018 Jan; 99():237-243. PubMed ID: 28763785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of ZnO Nanorods Based Whispering Gallery Mode Resonator in Optical Immunosensors.
    Tereshchenko A; Yazdi GR; Konup I; Smyntyna V; Khranovskyy V; Yakimova R; Ramanavicius A
    Colloids Surf B Biointerfaces; 2020 Jul; 191():110999. PubMed ID: 32289650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesizing, characterizing, and toxicity evaluating of Phycocyanin-ZnO nanorod composites: A back to nature approaches.
    Davaeifar S; Modarresi MH; Mohammadi M; Hashemi E; Shafiei M; Maleki H; Vali H; Zahiri HS; Noghabi KA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():221-230. PubMed ID: 30537618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultratrace level determination and quantitative analysis of kidney injury biomarkers in patient samples attained by zinc oxide nanorods.
    Singh M; Alabanza A; Gonzalez LE; Wang W; Reeves WB; Hahm JI
    Nanoscale; 2016 Feb; 8(8):4613-22. PubMed ID: 26846189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc Oxide Nanorods Shielded with an Ultrathin Nickel Layer: Tailoring of Physical Properties.
    Mudusu D; Nandanapalli KR; Dugasani SR; Park SH; Tu CW
    Sci Rep; 2016 Jun; 6():28561. PubMed ID: 27334555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes.
    Vabbina PK; Kaushik A; Pokhrel N; Bhansali S; Pala N
    Biosens Bioelectron; 2015 Jan; 63():124-130. PubMed ID: 25064820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into factors affecting the presence, degree, and temporal stability of fluorescence intensification on ZnO nanorod ends.
    Singh M; Jiang R; Coia H; Choi DS; Alabanza A; Chang JY; Wang J; Hahm JI
    Nanoscale; 2015 Jan; 7(4):1424-36. PubMed ID: 25504319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-Modulated and Nanorod-Waveguided Fluorescence in Single Zinc Oxide Nanorod-Based Immunodetection.
    Sytu MRC; Stoner A; Hahm JI
    Biosensors (Basel); 2024 Feb; 14(2):. PubMed ID: 38392004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells.
    Ho PY; Thiyagu S; Kao SH; Kao CY; Lin CF
    Nanoscale; 2014 Jan; 6(1):466-71. PubMed ID: 24217222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascade Amplifiers of Intracellular Reactive Oxygen Species Based on Mitochondria-Targeted Core-Shell ZnO-TPP@D/H Nanorods for Breast Cancer Therapy.
    Liang X; Xu S; Zhang J; Li J; Shen Q
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38749-38759. PubMed ID: 30339356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low temperature process for phosphorous doped ZnO nanorods via a combination of hydrothermal and spin-on dopant methods.
    Sohn JI; Jung YI; Baek SH; Cha S; Jang JE; Cho CH; Kim JH; Kim JM; Park IK
    Nanoscale; 2014 Feb; 6(4):2046-51. PubMed ID: 24366377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method.
    Liu Y; Fu Y; Yu H; Liu Y
    J Colloid Interface Sci; 2013 Oct; 407():116-21. PubMed ID: 23880522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reagentless amperometric immunosensor for alpha-1-fetoprotein based on gold nanowires and ZnO nanorods modified electrode.
    Lu X; Bai H; He P; Cha Y; Yang G; Tan L; Yang Y
    Anal Chim Acta; 2008 May; 615(2):158-64. PubMed ID: 18442521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized ferrocene-functionalized ZnO nanorods for signal amplification in electrochemical immunoassay of Escherichia coli.
    Teng Y; Zhang X; Fu Y; Liu H; Wang Z; Jin L; Zhang W
    Biosens Bioelectron; 2011 Aug; 26(12):4661-6. PubMed ID: 21733671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel ZnO nanorod films by chemical solution deposition for planar device applications.
    Singh D; Narasimulu AA; Garcia-Gancedo L; Fu YQ; Soin N; Shao G; Luo JK
    Nanotechnology; 2013 Jul; 24(27):275601. PubMed ID: 23743485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO nanorod-chitosan composite coatings with enhanced antifouling properties.
    Al-Belushi MA; Myint MTZ; Kyaw HH; Al-Naamani L; Al-Mamari R; Al-Abri M; Dobretsov S
    Int J Biol Macromol; 2020 Nov; 162():1743-1751. PubMed ID: 32800955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The toxicity of ZnO nanomaterials to HepG2 cells: the influence of size and shape of particles.
    Yan D; Long J; Liu J; Cao Y
    J Appl Toxicol; 2019 Feb; 39(2):231-240. PubMed ID: 30159912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Tunable Bioluminescence Resonance Energy Transfer via Geometry-Controlled ZnO Nanorod Coordination.
    Lim JH; Park GC; Lee SM; Lee JH; Lim B; Hwang SM; Kim JH; Park H; Joo J; Kim YP
    Small; 2015 Jul; 11(28):3469-75. PubMed ID: 25802061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.