BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31036213)

  • 1. Highly sensitive multiplex detection of microRNA by competitive DNA strand displacement fluorescence assay.
    Chinnappan R; Mohammed R; Yaqinuddin A; Abu-Salah K; Zourob M
    Talanta; 2019 Aug; 200():487-493. PubMed ID: 31036213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction.
    Dong H; Zhang J; Ju H; Lu H; Wang S; Jin S; Hao K; Du H; Zhang X
    Anal Chem; 2012 May; 84(10):4587-93. PubMed ID: 22510208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-Strand Displacement Biosensor and Quencher-Free Fluorescence Strategy for Rapid Detection of MicroRNA.
    Liao R; He K; Chen C; Chen X; Cai C
    Anal Chem; 2016 Apr; 88(8):4254-8. PubMed ID: 26985690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quencher-free fluorescent method for homogeneously sensitive detection of microRNAs in human lung tissues.
    Zhu G; Liang L; Zhang CY
    Anal Chem; 2014 Nov; 86(22):11410-6. PubMed ID: 25356523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.
    Miao X; Cheng Z; Ma H; Li Z; Xue N; Wang P
    Anal Chem; 2018 Jan; 90(2):1098-1103. PubMed ID: 29198110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA.
    Xia Y; Wang L; Li J; Chen X; Lan J; Yan A; Lei Y; Yang S; Yang H; Chen J
    Anal Chem; 2018 Aug; 90(15):8969-8976. PubMed ID: 29973048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS
    Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular spectrally encoded microgels with double strand probes for absolute and direct miRNA fluorescence detection at high sensitivity.
    Causa F; Aliberti A; Cusano AM; Battista E; Netti PA
    J Am Chem Soc; 2015 Feb; 137(5):1758-61. PubMed ID: 25613454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection.
    Tu Y; Li W; Wu P; Zhang H; Cai C
    Anal Chem; 2013 Feb; 85(4):2536-42. PubMed ID: 23320509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and sensitive detection of circulating miRNA in human serum by ligase-mediated amplification.
    Chan HN; Ho SL; He D; Li HW
    Talanta; 2020 Jan; 206():120217. PubMed ID: 31514897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection.
    Ren X; Xue Q; Wen L; Li X; Wang H
    Anal Chim Acta; 2019 Apr; 1053():114-121. PubMed ID: 30712556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-assisted FRET signal amplification for ultrasensitive detection of microRNA.
    Wang B; You Z; Ren D
    Analyst; 2019 Mar; 144(7):2304-2311. PubMed ID: 30672513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA tetrahedral molecular sieve for size-selective fluorescence sensing of miRNA 21 in living cells.
    Peng C; Leng M; Gao Y; Feng Q; Miao X
    Talanta; 2024 Aug; 276():126218. PubMed ID: 38759363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells.
    Cai X; Zhang H; Yu X; Wang W
    Talanta; 2020 Aug; 216():120996. PubMed ID: 32456922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient fluorescent method for selective detection of mature miRNA species.
    Kato Y
    Nucleic Acids Symp Ser (Oxf); 2008; (52):71-2. PubMed ID: 18776258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.
    Zhang K; Wang K; Zhu X; Xu F; Xie M
    Biosens Bioelectron; 2017 Jan; 87():358-364. PubMed ID: 27589398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Spectral Crosstalk Correction for Improving Multiplexed MicroRNA Detection Using a Single Excitation Wavelength.
    Liu Y; Wei M; Li Y; Liu A; Wei W; Zhang Y; Liu S
    Anal Chem; 2017 Mar; 89(6):3430-3436. PubMed ID: 28247764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and specific detection of miRNA using an isothermal exponential amplification method using fluorescence-labeled LNA/DNA chimera primers.
    Huang JF; Zhao N; Xu HQ; Xia H; Wei K; Fu WL; Huang Q
    Anal Bioanal Chem; 2016 Oct; 408(26):7437-46. PubMed ID: 27485624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.
    Zhang Y; Tian J; Li H; Wang L; Sun X
    J Fluoresc; 2012 Jan; 22(1):43-6. PubMed ID: 21826425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals.
    Li J; Schachermeyer S; Wang Y; Yin Y; Zhong W
    Anal Chem; 2009 Dec; 81(23):9723-9. PubMed ID: 19831385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.