BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 31036508)

  • 41. Targeting the phosphatidylinositol 3-kinase/AKT pathway for the treatment of multiple myeloma.
    Zhu J; Wang M; Cao B; Hou T; Mao X
    Curr Med Chem; 2014; 21(27):3173-87. PubMed ID: 24934342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deacetylase inhibitors: an advance in myeloma therapy?
    Laubach JP; San-Miguel JF; Hungria V; Hou J; Moreau P; Lonial S; Lee JH; Einsele H; Alsina M; Richardson PG
    Expert Rev Hematol; 2017 Mar; 10(3):229-237. PubMed ID: 28076695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors.
    Pei XY; Dai Y; Grant S
    Clin Cancer Res; 2004 Jun; 10(11):3839-52. PubMed ID: 15173093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma.
    Qian Y; Gong Y; Fan Z; Luo G; Huang Q; Deng S; Cheng H; Jin K; Ni Q; Yu X; Liu C
    J Hematol Oncol; 2020 Oct; 13(1):130. PubMed ID: 33008426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling.
    Feng R; Ma H; Hassig CA; Payne JE; Smith ND; Mapara MY; Hager JH; Lentzsch S
    Mol Cancer Ther; 2008 Jun; 7(6):1494-505. PubMed ID: 18566220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Blockade of PLD1 potentiates the antitumor effects of bortezomib in multiple myeloma cells by inhibiting the mTOR/NF-κB signal pathway.
    Wang Y; Dong F; Wan W; Zhang Z; Wang J; Wang H; Ke X
    Hematology; 2020 Dec; 25(1):424-432. PubMed ID: 33191863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emerging protein kinase inhibitors for the treatment of multiple myeloma.
    Lind J; Czernilofsky F; Vallet S; Podar K
    Expert Opin Emerg Drugs; 2019 Sep; 24(3):133-152. PubMed ID: 31327278
    [No Abstract]   [Full Text] [Related]  

  • 48. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway.
    Polivka J; Janku F
    Pharmacol Ther; 2014 May; 142(2):164-75. PubMed ID: 24333502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histone deacetylase inhibition in combination with MEK or BCL-2 inhibition in multiple myeloma.
    Ramakrishnan VG; Miller KC; Macon EP; Kimlinger TK; Haug J; Kumar S; Gonsalves WI; Rajkumar SV; Kumar SK
    Haematologica; 2019 Oct; 104(10):2061-2074. PubMed ID: 30846494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Various Signaling Pathways in Multiple Myeloma Cells and Effects of Treatment on These Pathways.
    Dehghanifard A; Kaviani S; Abroun S; Mehdizadeh M; Saiedi S; Maali A; Ghaffari S; Azad M
    Clin Lymphoma Myeloma Leuk; 2018 May; 18(5):311-320. PubMed ID: 29606369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Farnesyltransferase inhibitors and rapamycin in the treatment of multiple myeloma.
    Zangari M; Cavallo F; Tricot G
    Curr Pharm Biotechnol; 2006 Dec; 7(6):449-53. PubMed ID: 17168661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preclinical and clinical evaluation of elotuzumab, a SLAMF7-targeted humanized monoclonal antibody in development for multiple myeloma.
    Palumbo A; Sonneveld P
    Expert Rev Hematol; 2015 Aug; 8(4):481-91. PubMed ID: 26070331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biological Background of Resistance to Current Standards of Care in Multiple Myeloma.
    Mogollón P; Díaz-Tejedor A; Algarín EM; Paíno T; Garayoa M; Ocio EM
    Cells; 2019 Nov; 8(11):. PubMed ID: 31766279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KSP inhibitor SB743921 induces death of multiple myeloma cells via inhibition of the NF-κB signaling pathway.
    Song IS; Jeong YJ; Nyamaa B; Jeong SH; Kim HK; Kim N; Ko KS; Rhee BD; Han J
    BMB Rep; 2015 Oct; 48(10):571-6. PubMed ID: 25772758
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contemporary patient-tailored treatment strategies against high risk and relapsed or refractory multiple myeloma.
    Uckun FM; Qazi S; Demirer T; Champlin RE
    EBioMedicine; 2019 Jan; 39():612-620. PubMed ID: 30545798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma.
    Murray MY; Zaitseva L; Auger MJ; Craig JI; MacEwan DJ; Rushworth SA; Bowles KM
    Cell Cycle; 2015; 14(14):2367-75. PubMed ID: 25565020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of hypoxia on the pathogenesis and therapy resistance in multiple myeloma.
    Ikeda S; Tagawa H
    Cancer Sci; 2021 Oct; 112(10):3995-4004. PubMed ID: 34310776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DangER: protein ovERload. Targeting protein degradation to treat myeloma.
    Aronson LI; Davies FE
    Haematologica; 2012 Aug; 97(8):1119-30. PubMed ID: 22580998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?
    Singh SS; Yap WN; Arfuso F; Kar S; Wang C; Cai W; Dharmarajan AM; Sethi G; Kumar AP
    World J Gastroenterol; 2015 Nov; 21(43):12261-73. PubMed ID: 26604635
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anti-myeloma effects of ruxolitinib combined with bortezomib and lenalidomide: A rationale for JAK/STAT pathway inhibition in myeloma patients.
    de Oliveira MB; Fook-Alves VL; Eugenio AIP; Fernando RC; Sanson LFG; de Carvalho MF; Braga WMT; Davies FE; Colleoni GWB
    Cancer Lett; 2017 Sep; 403():206-215. PubMed ID: 28645562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.