BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31036812)

  • 21. Hybrid optogenetic and electrical stimulation for greater spatial resolution and temporal fidelity of cochlear activation.
    Thompson AC; Wise AK; Hart WL; Needham K; Fallon JB; Gunewardene N; Stoddart PR; Richardson RT
    J Neural Eng; 2020 Nov; 17(5):056046. PubMed ID: 33036009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.
    Darrow KN; Slama MC; Kozin ED; Owoc M; Hancock K; Kempfle J; Edge A; Lacour S; Boyden E; Polley D; Brown MC; Lee DJ
    Brain Res; 2015 Mar; 1599():44-56. PubMed ID: 25481416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of an electrode for the artificial cochlear sensory epithelium.
    Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T
    Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation.
    Snyder RL; Bierer JA; Middlebrooks JC
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):305-22. PubMed ID: 15492888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward the Optical Cochlear Implant.
    Dombrowski T; Rankovic V; Moser T
    Cold Spring Harb Perspect Med; 2019 Aug; 9(8):. PubMed ID: 30323016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developing Fast, Red-Light Optogenetic Stimulation of Spiral Ganglion Neurons for Future Optical Cochlear Implants.
    Huet AT; Dombrowski T; Rankovic V; Thirumalai A; Moser T
    Front Mol Neurosci; 2021; 14():635897. PubMed ID: 33776648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation.
    Snyder R; Leake P; Rebscher S; Beitel R
    J Neurophysiol; 1995 Feb; 73(2):449-67. PubMed ID: 7760111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus.
    Vollmer M; Snyder RL; Leake PA; Beitel RE; Moore CM; Rebscher SJ
    J Neurophysiol; 1999 Dec; 82(6):2883-902. PubMed ID: 10601427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial extent of cochlear infrared neural stimulation determined by tone-on-light masking.
    Matic AI; Walsh JT; Richter CP
    J Biomed Opt; 2011 Nov; 16(11):118002. PubMed ID: 22112140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic stimulation allows focal activation of the mouse cochlea.
    Lee JI; Seist R; McInturff S; Lee DJ; Brown MC; Stankovic KM; Fried S
    Elife; 2022 May; 11():. PubMed ID: 35608242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss.
    Richardson RT; Thompson AC; Wise AK; Needham K
    Expert Opin Biol Ther; 2017 Feb; 17(2):213-223. PubMed ID: 27960585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic stimulation of the cochlea-A review of mechanisms, measurements, and first models.
    Weiss RS; Voss A; Hemmert W
    Network; 2016; 27(2-3):212-236. PubMed ID: 27644125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Influence of Cochlear Implant-Based Electric Stimulation on the Electrophysiological Characteristics of Cultured Spiral Ganglion Neurons.
    Shen N; Zhou L; Lai B; Li S
    Neural Plast; 2020; 2020():3108490. PubMed ID: 32963515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial selectivity to intracochlear electrical stimulation in the inferior colliculus is degraded after long-term deafness in cats.
    Vollmer M; Beitel RE; Snyder RL; Leake PA
    J Neurophysiol; 2007 Nov; 98(5):2588-603. PubMed ID: 17855592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study.
    Xu J; Shepherd RK; Millard RE; Clark GM
    Hear Res; 1997 Mar; 105(1-2):1-29. PubMed ID: 9083801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats.
    George SS; Wise AK; Fallon JB; Shepherd RK
    J Neural Eng; 2015 Jun; 12(3):036003. PubMed ID: 25834113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Considering optogenetic stimulation for cochlear implants.
    Jeschke M; Moser T
    Hear Res; 2015 Apr; 322():224-34. PubMed ID: 25601298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.