BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31036823)

  • 1. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey.
    Buckner RL; Margulies DS
    Nat Commun; 2019 Apr; 10(1):1976. PubMed ID: 31036823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Organization of Frontoparietal Cortex in the Marmoset Investigated with Awake Resting-State fMRI.
    Hori Y; Cléry JC; Schaeffer DJ; Menon RS; Everling S
    Cereb Cortex; 2022 Apr; 32(9):1965-1977. PubMed ID: 34515315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint-embeddings reveal functional differences in default-mode network architecture between marmosets and humans.
    Ngo GN; Hori Y; Everling S; Menon RS
    Neuroimage; 2023 May; 272():120035. PubMed ID: 36948281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventral pathway of the human brain: A continuous association tract system.
    Weiller C; Reisert M; Peto I; Hennig J; Makris N; Petrides M; Rijntjes M; Egger K
    Neuroimage; 2021 Jul; 234():117977. PubMed ID: 33757905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical and functional investigation of the marmoset default mode network.
    Liu C; Yen CC; Szczupak D; Ye FQ; Leopold DA; Silva AC
    Nat Commun; 2019 Apr; 10(1):1975. PubMed ID: 31036814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional anatomy of the cerebral cortex by computed tomography.
    Gado M; Hanaway J; Frank R
    J Comput Assist Tomogr; 1979 Feb; 3(1):1-19. PubMed ID: 311365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Face selective patches in marmoset frontal cortex.
    Schaeffer DJ; Selvanayagam J; Johnston KD; Menon RS; Freiwald WA; Everling S
    Nat Commun; 2020 Sep; 11(1):4856. PubMed ID: 32978385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From ATOM to GradiATOM: Cortical gradients support time and space processing as revealed by a meta-analysis of neuroimaging studies.
    Cona G; Wiener M; Scarpazza C
    Neuroimage; 2021 Jan; 224():117407. PubMed ID: 32992001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From sensation to cognition.
    Mesulam MM
    Brain; 1998 Jun; 121 ( Pt 6)():1013-52. PubMed ID: 9648540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracranial Recordings Demonstrate Both Cortical and Medial Temporal Lobe Engagement in Visual Search in Humans.
    Slama SJK; Jimenez R; Saha S; King-Stephens D; Laxer KD; Weber PB; Endestad T; Ivanovic J; Larsson PG; Solbakk AK; Lin JJ; Knight RT
    J Cogn Neurosci; 2021 Aug; 33(9):1833-1861. PubMed ID: 34375422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks.
    Braga RM; DiNicola LM; Becker HC; Buckner RL
    J Neurophysiol; 2020 Nov; 124(5):1415-1448. PubMed ID: 32965153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical and physiological definition of the motor cortex of the marmoset monkey.
    Burman KJ; Palmer SM; Gamberini M; Spitzer MW; Rosa MG
    J Comp Neurol; 2008 Feb; 506(5):860-76. PubMed ID: 18076083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical input to the frontal pole of the marmoset monkey.
    Burman KJ; Reser DH; Yu HH; Rosa MG
    Cereb Cortex; 2011 Aug; 21(8):1712-37. PubMed ID: 21139076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex.
    Villena-Gonzalez M; Wang HT; Sormaz M; Mollo G; Margulies DS; Jefferies EA; Smallwood J
    Cortex; 2018 Feb; 99():224-234. PubMed ID: 29287243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Estimates of Macroscale Network Organization in the Human and Their Relation to Anatomical Connectivity in the Marmoset Monkey.
    Du J; Buckner RL
    Curr Opin Behav Sci; 2021 Aug; 40():144-152. PubMed ID: 34722833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas.
    Burman KJ; Palmer SM; Gamberini M; Rosa MG
    J Comp Neurol; 2006 Mar; 495(2):149-72. PubMed ID: 16435289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cingulate cortex of the rhesus monkey: II. Cortical afferents.
    Vogt BA; Pandya DN
    J Comp Neurol; 1987 Aug; 262(2):271-89. PubMed ID: 3624555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a Functional Hierarchy of Association Networks.
    Choi EY; Drayna GK; Badre D
    J Cogn Neurosci; 2018 May; 30(5):722-736. PubMed ID: 29308987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic correlates of cognitive impairment in mesial temporal lobe epilepsy.
    Laurent A; Artiges E; Mellerio C; Boutin-Watine M; Landré E; Semah F; Chassoux F
    Epilepsy Behav; 2020 Apr; 105():106948. PubMed ID: 32062107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior.
    Selemon LD; Goldman-Rakic PS
    J Neurosci; 1988 Nov; 8(11):4049-68. PubMed ID: 2846794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.