These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31036887)

  • 21. High Hardness and Wear Resistance in AlCrFeNiV High-Entropy Alloy Induced by Dual-Phase Body-Centered Cubic Coupling Effects.
    Feng C; Wang X; Yang L; Guo Y; Wang Y
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Study on Material Properties of Intermetallic Phases in a Multicomponent Hypereutectic Al-Si Alloy with the Use of Nanoindentation Testing.
    Tupaj M; Orłowicz AW; Mróz M; Trytek A; Dolata AJ; Dziedzic A
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33317033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Fe Addition in the RM(Nb)IC Alloy Nb-30Ti-10Si-2Al-5Cr-3Fe-5Sn-2Hf (at.%) on Its Microstructure, Complex Concentrated and High Entropy Phases, Pest Oxidation, Strength and Contamination with Oxygen, and a Comparison with Other RM(Nb)ICs, Refractory Complex Concentrated Alloys (RCCAs) and Refractory High Entropy Alloys (RHEAs).
    Vellios N; Tsakiropoulos P
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coinciding significance of the crystallographic orientation and nanostructuring on the biocompatibility of TZNT-Ag
    Zareidoost A; Yousefpour M
    J Biomed Mater Res B Appl Biomater; 2022 Mar; 110(3):625-637. PubMed ID: 34585524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Co and Gd Additions on Microstructures and Properties of FeSiBAlNi High Entropy Alloys.
    Zhai S; Wang W; Xu J; Xu S; Zhang Z; Wang Y
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supporting data for strengthening and deformation behavior of as-cast CoCrCu
    Shim SH; Pouraliakbar H; Lee BJ; Kim YK; Rizi MS; Han JH; Hong SI
    Data Brief; 2022 Dec; 45():108567. PubMed ID: 36124136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring Compressive Strength and Absorption Energy of Lightweight Multi-Phase AlCuSiFeX (X = Cr, Mn, Zn, Sn) High-Entropy Alloys Processed via Powder Metallurgy.
    Sharma A; Lee H; Ahn B
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Cr Content on Microstructure and Mechanical Properties of Co-Free FeCr
    Cui P; Wang W; Nong Z; Lai Z; Liu Y; Zhu J
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Microstructural Evolution, Tensile Properties, and Phase Hardness of a TiAl Alloy with a High Content of the β Phase.
    Cui N; Wu Q; Yan Z; Zhou H; Wang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31466224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser surface treatment to improve mechanical properties of cast titanium.
    Watanabe I; McBride M; Newton P; Kurtz KS
    Dent Mater; 2009 May; 25(5):629-33. PubMed ID: 19121866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gleeble-Simulated and Semi-Industrial Studies on the Microstructure Evolution of Fe-Co-Cr-Mo-W-V-C Alloy during Hot Deformation.
    Luo Y; Guo H; Guo J; Yang W
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30567337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Biocorrosion Resistance and Cellular Response of a Dual-Phase High Entropy Alloy through Reduced Elemental Heterogeneity.
    Perumal G; Grewal HS; Pole M; Reddy LVK; Mukherjee S; Singh H; Manivasagam G; Arora HS
    ACS Appl Bio Mater; 2020 Feb; 3(2):1233-1244. PubMed ID: 35019324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys.
    Li Z; Tasan CC; Springer H; Gault B; Raabe D
    Sci Rep; 2017 Jan; 7():40704. PubMed ID: 28079175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.
    Průša F; Bláhová M; Vojtěch D; Kučera V; Bernatiková A; Kubatík TF; Michalcová A
    Materials (Basel); 2016 Nov; 9(12):. PubMed ID: 28774094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strengthening Mechanisms in CoCrFeNiX
    Zhang Y; Shen Q; Chen X; Jayalakshmi S; Singh RA; Konovalov S; Deev VB; Prusov ES
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33809342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Data on the microstructure and deformation of Fe
    Lee BJ; Song JS; Moon WJ; Hong SI
    Data Brief; 2021 Feb; 34():106713. PubMed ID: 33490333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microstructural Evolution and Tensile Properties of Al
    Wang X; Zhang Z; Wang Z; Ren X
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility.
    Kopova I; Stráský J; Harcuba P; Landa M; Janeček M; Bačákova L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():230-238. PubMed ID: 26706526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.