BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 31036945)

  • 1. Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior.
    Kar K; Kubilius J; Schmidt K; Issa EB; DiCarlo JJ
    Nat Neurosci; 2019 Jun; 22(6):974-983. PubMed ID: 31036945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition.
    Kar K; DiCarlo JJ
    Neuron; 2021 Jan; 109(1):164-176.e5. PubMed ID: 33080226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.
    Majaj NJ; Hong H; Solomon EA; DiCarlo JJ
    J Neurosci; 2015 Sep; 35(39):13402-18. PubMed ID: 26424887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual recognition in rhesus monkeys requires area TE but not TEO.
    Eldridge MAG; Pearl JE; Fomani GP; Masseau EC; Fredericks JM; Chen G; Richmond BJ
    Cereb Cortex; 2023 Mar; 33(6):3098-3106. PubMed ID: 35770336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments.
    Kalfas I; Vinken K; Vogels R
    PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond core object recognition: Recurrent processes account for object recognition under occlusion.
    Rajaei K; Mohsenzadeh Y; Ebrahimpour R; Khaligh-Razavi SM
    PLoS Comput Biol; 2019 May; 15(5):e1007001. PubMed ID: 31091234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Critical Test of Deep Convolutional Neural Networks' Ability to Capture Recurrent Processing in the Brain Using Visual Masking.
    Loke J; Seijdel N; Snoek L; van der Meer M; van de Klundert R; Quispel E; Cappaert N; Scholte HS
    J Cogn Neurosci; 2022 Nov; 34(12):2390-2405. PubMed ID: 36122352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the feedforward sweep: feedback computations in the visual cortex.
    Kreiman G; Serre T
    Ann N Y Acad Sci; 2020 Mar; 1464(1):222-241. PubMed ID: 32112444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep convolutional models improve predictions of macaque V1 responses to natural images.
    Cadena SA; Denfield GH; Walker EY; Gatys LA; Tolias AS; Bethge M; Ecker AS
    PLoS Comput Biol; 2019 Apr; 15(4):e1006897. PubMed ID: 31013278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex.
    Zeman AA; Ritchie JB; Bracci S; Op de Beeck H
    Sci Rep; 2020 Feb; 10(1):2453. PubMed ID: 32051467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of human dynamic object recognition revealed by sequential deep neural networks.
    Sörensen LKA; Bohté SM; de Jong D; Slagter HA; Scholte HS
    PLoS Comput Biol; 2023 Jun; 19(6):e1011169. PubMed ID: 37294830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding transformation tolerant visual object representations in the human brain and convolutional neural networks.
    Xu Y; Vaziri-Pashkam M
    Neuroimage; 2022 Nov; 263():119635. PubMed ID: 36116617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding of Partially Occluded and Occluding Objects in Primate Inferior Temporal Cortex.
    Namima T; Pasupathy A
    J Neurosci; 2021 Jun; 41(26):5652-5666. PubMed ID: 34006588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Identity-Preserving Object Transformations in Human Posterior Parietal Cortex and Convolutional Neural Networks.
    Mocz V; Vaziri-Pashkam M; Chun M; Xu Y
    J Cogn Neurosci; 2022 Nov; 34(12):2406-2435. PubMed ID: 36122358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.