These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31037351)
1. Automatic image segmentation based on synthetic tissue model for delineating organs at risk in spinal metastasis treatment planning. Wittenstein O; Hiepe P; Sowa LH; Karsten E; Fandrich I; Dunst J Strahlenther Onkol; 2019 Dec; 195(12):1094-1103. PubMed ID: 31037351 [TBL] [Abstract][Full Text] [Related]
2. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
3. Automatic multiatlas based organ at risk segmentation in mice. van der Heyden B; Podesta M; Eekers DB; Vaniqui A; Almeida IP; Schyns LE; van Hoof SJ; Verhaegen F Br J Radiol; 2019 Mar; 92(1095):20180364. PubMed ID: 29975151 [TBL] [Abstract][Full Text] [Related]
4. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248 [TBL] [Abstract][Full Text] [Related]
5. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
7. Interactive contour delineation of organs at risk in radiotherapy: Clinical evaluation on NSCLC patients. Dolz J; Kirişli HA; Fechter T; Karnitzki S; Oehlke O; Nestle U; Vermandel M; Massoptier L Med Phys; 2016 May; 43(5):2569. PubMed ID: 27147367 [TBL] [Abstract][Full Text] [Related]
8. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357 [TBL] [Abstract][Full Text] [Related]
9. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
10. Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Yang J; Veeraraghavan H; Armato SG; Farahani K; Kirby JS; Kalpathy-Kramer J; van Elmpt W; Dekker A; Han X; Feng X; Aljabar P; Oliveira B; van der Heyden B; Zamdborg L; Lam D; Gooding M; Sharp GC Med Phys; 2018 Oct; 45(10):4568-4581. PubMed ID: 30144101 [TBL] [Abstract][Full Text] [Related]
11. Comparison between atlas and convolutional neural network based automatic segmentation of multiple organs at risk in non-small cell lung cancer. Zhang T; Yang Y; Wang J; Men K; Wang X; Deng L; Bi N Medicine (Baltimore); 2020 Aug; 99(34):e21800. PubMed ID: 32846816 [TBL] [Abstract][Full Text] [Related]
12. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
13. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
14. Transfer learning for auto-segmentation of 17 organs-at-risk in the head and neck: Bridging the gap between institutional and public datasets. Clark B; Hardcastle N; Johnston LA; Korte J Med Phys; 2024 Jul; 51(7):4767-4777. PubMed ID: 38376454 [TBL] [Abstract][Full Text] [Related]
15. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801 [TBL] [Abstract][Full Text] [Related]
16. Feasibility evaluation of novel AI-based deep-learning contouring algorithm for radiotherapy. Maduro Bustos LA; Sarkar A; Doyle LA; Andreou K; Noonan J; Nurbagandova D; Shah SA; Irabor OC; Mourtada F J Appl Clin Med Phys; 2023 Nov; 24(11):e14090. PubMed ID: 37464581 [TBL] [Abstract][Full Text] [Related]
17. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer. Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer. Chen W; Wang C; Zhan W; Jia Y; Ruan F; Qiu L; Yang S; Li Y Sci Rep; 2021 Nov; 11(1):23002. PubMed ID: 34836989 [TBL] [Abstract][Full Text] [Related]
19. A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy. Chen X; Sun S; Bai N; Han K; Liu Q; Yao S; Tang H; Zhang C; Lu Z; Huang Q; Zhao G; Xu Y; Chen T; Xie X; Liu Y Radiother Oncol; 2021 Jul; 160():175-184. PubMed ID: 33961914 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework. Finnegan R; Dowling J; Koh ES; Tang S; Otton J; Delaney G; Batumalai V; Luo C; Atluri P; Satchithanandha A; Thwaites D; Holloway L Phys Med Biol; 2019 Apr; 64(8):085006. PubMed ID: 30856618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]