BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31037382)

  • 1. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582.
    Jacek P; Kubiak K; Ryngajłło M; Rytczak P; Paluch P; Bielecki S
    N Biotechnol; 2019 Sep; 52():60-68. PubMed ID: 31096013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives.
    Ryngajłło M; Jędrzejczak-Krzepkowska M; Kubiak K; Ludwicka K; Bielecki S
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6565-6585. PubMed ID: 32529377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically.
    Jacek P; Szustak M; Kubiak K; Gendaszewska-Darmach E; Ludwicka K; Bielecki S
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30563030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.
    Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP
    Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03.
    He X; Meng H; Song H; Deng S; He T; Wang S; Wei D; Zhang Z
    Carbohydr Res; 2020 Jul; 493():108030. PubMed ID: 32442702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial nanocellulose loaded with bromelain and nisin as a promising bioactive material for wound debridement.
    Jančič U; Trček J; Verestiuc L; Vukomanović M; Gorgieva S
    Int J Biol Macromol; 2024 May; 266(Pt 2):131329. PubMed ID: 38574906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Knockdown of motility-related genes of
    Liu J; Wang X; Peng Z; Xin B; Zhong C
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1856-1867. PubMed ID: 38914496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Roles of the Various Cellulose Biosynthesis Operons in
    Bimmer M; Mientus M; Klingl A; Ehrenreich A; Liebl W
    Appl Environ Microbiol; 2022 Apr; 88(7):e0246021. PubMed ID: 35319232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Stretchable Bacterial Cellulose Produced by
    Cielecka I; Ryngajłło M; Maniukiewicz W; Bielecki S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus.
    Jaroennonthasit W; Lam NT; Sukyai P
    Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete genome sequence and transcriptome response to vitamin C supplementation of Novacetimonas hansenii SI1 - producer of highly-stretchable cellulose.
    Ryngajłło M; Cielecka I; Daroch M
    N Biotechnol; 2024 Jul; 81():57-68. PubMed ID: 38531507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic modification for enhancing bacterial cellulose production and its applications.
    Singhania RR; Patel AK; Tsai ML; Chen CW; Di Dong C
    Bioengineered; 2021 Dec; 12(1):6793-6807. PubMed ID: 34519629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens.
    Taweecheep P; Naloka K; Matsutani M; Yakushi T; Matsushita K; Theeragool G
    Carbohydr Polym; 2019 Dec; 226():115243. PubMed ID: 31582059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.