BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31037382)

  • 21. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutation-based selection and analysis of Komagataeibacter hansenii HDM1-3 for improvement in bacterial cellulose production.
    Li Y; Tian J; Tian H; Chen X; Ping W; Tian C; Lei H
    J Appl Microbiol; 2016 Nov; 121(5):1323-1334. PubMed ID: 27455093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha.
    Gupte Y; Kulkarni A; Raut B; Sarkar P; Choudhury R; Chawande A; Kumar GRK; Bhadra B; Satapathy A; Das G; Vishnupriya B; Dasgupta S
    Carbohydr Polym; 2021 Aug; 266():118176. PubMed ID: 34044916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers.
    Ryngajłło M; Kubiak K; Jędrzejczak-Krzepkowska M; Jacek P; Bielecki S
    Microbiologyopen; 2019 May; 8(5):e00731. PubMed ID: 30365246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol.
    van Zyl EM; Kennedy MA; Nason W; Fenlon SJ; Young EM; Smith LJ; Bhatia SR; Coburn JM
    Biomater Adv; 2023 May; 148():213345. PubMed ID: 36889229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans.
    Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI
    Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive laboratory evolution of nanocellulose-producing bacterium.
    Vasconcellos VM; Farinas CS; Ximenes E; Slininger P; Ladisch M
    Biotechnol Bioeng; 2019 Aug; 116(8):1923-1933. PubMed ID: 31038201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae.
    Teh MY; Ooi KH; Danny Teo SX; Bin Mansoor ME; Shaun Lim WZ; Tan MH
    ACS Synth Biol; 2019 Apr; 8(4):708-723. PubMed ID: 30865830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of cellulose synthesis in a high-producing acetic acid bacterium Komagataeibacter hansenii.
    Bimmer M; Reimer M; Klingl A; Ludwig C; Zollfrank C; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2023 May; 107(9):2947-2967. PubMed ID: 36930278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization of plasmids in bacterial nanocellulose as gene activated matrix.
    Pötzinger Y; Rahnfeld L; Kralisch D; Fischer D
    Carbohydr Polym; 2019 Apr; 209():62-73. PubMed ID: 30732826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioengineering tunable porosity in bacterial nanocellulose matrices.
    Ashrafi Z; Lucia L; Krause W
    Soft Matter; 2019 Dec; 15(45):9359-9367. PubMed ID: 31697286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants.
    Osorio M; Cañas A; Puerta J; Díaz L; Naranjo T; Ortiz I; Castro C
    Sci Rep; 2019 Jul; 9(1):10553. PubMed ID: 31332259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by
    Li Z; Chen SQ; Cao X; Li L; Zhu J; Yu H
    J Microbiol Biotechnol; 2021 Mar; 31(3):429-438. PubMed ID: 33323677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
    Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z
    Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen
    Kaczmarek M; Jędrzejczak-Krzepkowska M; Ludwicka K
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
    Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review.
    Moradi M; Jacek P; Farhangfar A; Guimarães JT; Forough M
    Int J Biol Macromol; 2021 Jul; 183():635-650. PubMed ID: 33957199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin.
    Chen SQ; Cao X; Li Z; Zhu J; Li L
    Carbohydr Polym; 2020 Oct; 246():116632. PubMed ID: 32747267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melanoma growth in non-chemically modified translucid bacterial nanocellulose hollow and compartimentalized spheres.
    Fucina G; Cesca K; Berti FV; Biavatti MW; Porto LM
    Biochim Biophys Acta Gen Subj; 2022 Sep; 1866(9):130183. PubMed ID: 35661803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.