These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31037382)

  • 61. Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator.
    Nabeela K; Thorat MN; Backer SN; Ramachandran AM; Thomas RT; Preethikumar G; Mohamed AP; Asok A; Dastager SG; Pillai S
    ACS Appl Bio Mater; 2021 May; 4(5):4373-4383. PubMed ID: 35006849
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transcriptomic Insights into Metabolism-Dependent Biosynthesis of Bacterial Nanocellulose.
    Wu QZ; Lin WQ; Wu JY; Cao LW; Li HH; Gao R; Du WZ; Sheng GP; Chen YG; Li WW
    ACS Appl Bio Mater; 2024 Mar; 7(3):1801-1809. PubMed ID: 38416780
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering.
    Sundberg J; Götherström C; Gatenholm P
    Biomed Mater Eng; 2015; 25(1):39-52. PubMed ID: 25585979
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization, genome analysis and genetic tractability studies of a new nanocellulose producing Komagataeibacter intermedius isolate.
    Cannazza P; Rissanen AJ; Sarlin E; Guizelini D; Minardi C; Losoi P; Molinari F; Romano D; Mangayil R
    Sci Rep; 2022 Nov; 12(1):20520. PubMed ID: 36443480
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles.
    Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA
    Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Review of Bacterial Nanocellulose as Suitable Substrate for Conformable and Flexible Organic Light-Emitting Diodes.
    Faraco TA; Fontes ML; Paschoalin RT; Claro AM; Gonçalves IS; Cavicchioli M; Farias RL; Cremona M; Ribeiro SJL; Barud HDS; Legnani C
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771781
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments.
    Li Y; Yan P; Lei Q; Li B; Sun Y; Li S; Lei H; Xie N
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1491-1503. PubMed ID: 31512094
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.
    Moritz S; Wiegand C; Wesarg F; Hessler N; Müller FA; Kralisch D; Hipler UC; Fischer D
    Int J Pharm; 2014 Aug; 471(1-2):45-55. PubMed ID: 24792978
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine.
    Wiegand C; Moritz S; Hessler N; Kralisch D; Wesarg F; Müller FA; Fischer D; Hipler UC
    J Mater Sci Mater Med; 2015 Oct; 26(10):245. PubMed ID: 26411441
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome sequences and description of novel exopolysaccharides producing species Komagataeibacter pomaceti sp. nov. and reclassification of Komagataeibacter kombuchae (Dutta and Gachhui 2007) Yamada et al., 2013 as a later heterotypic synonym of Komagataeibacter hansenii (Gosselé et al. 1983) Yamada et al., 2013.
    Škraban J; Cleenwerck I; Vandamme P; Fanedl L; Trček J
    Syst Appl Microbiol; 2018 Nov; 41(6):581-592. PubMed ID: 30177404
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
    Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P
    Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.
    Florea M; Reeve B; Abbott J; Freemont PS; Ellis T
    Sci Rep; 2016 Mar; 6():23635. PubMed ID: 27010592
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose.
    Chen SQ; Meldrum OW; Liao Q; Li Z; Cao X; Guo L; Zhang S; Zhu J; Li L
    Carbohydr Polym; 2021 Nov; 271():118431. PubMed ID: 34364571
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488.
    Hernández-Arriaga AM; Del Cerro C; Urbina L; Eceiza A; Corcuera MA; Retegi A; Auxiliadora Prieto M
    Microb Biotechnol; 2019 Jul; 12(4):620-632. PubMed ID: 30793484
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes.
    Fleury B; Abraham E; De La Cruz JA; Chandrasekar VS; Senyuk B; Liu Q; Cherpak V; Park S; Ten Hove JB; Smalyukh II
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34115-34121. PubMed ID: 32615033
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phylogenomic and comparative analyses support the reclassification of several
    Brandão PR; Crespo MTB; Nascimento FX
    Int J Syst Evol Microbiol; 2022 Feb; 72(2):. PubMed ID: 35175916
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique.
    Müller A; Wesarg F; Hessler N; Müller FA; Kralisch D; Fischer D
    Carbohydr Polym; 2014 Jun; 106():410-3. PubMed ID: 24721096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.