These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31037535)

  • 1. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust.
    Abro NA; Wang G; Ullah H; Long GL; Hao K; Nong X; Cai N; Tu X; Zhang Z
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17797-17808. PubMed ID: 31037535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different Effects of Metarhizium anisopliae Strains IMI330189 and IBC200614 on Enzymes Activities and Hemocytes of Locusta migratoria L.
    Cao G; Jia M; Zhao X; Wang L; Tu X; Wang G; Nong X; Zhang Z
    PLoS One; 2016; 11(5):e0155257. PubMed ID: 27227835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants.
    Wang C; St Leger RJ
    Eukaryot Cell; 2007 May; 6(5):808-16. PubMed ID: 17337634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity.
    Zhang W; Xie M; Eleftherianos I; Mohamed A; Cao Y; Song B; Zang LS; Jia C; Bian J; Keyhani NO; Xia Y
    J Adv Res; 2023 Jun; 48():1-16. PubMed ID: 36064181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.
    Wang Y; Yang P; Cui F; Kang L
    PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts.
    Freimoser FM; Screen S; Bagga S; Hu G; St Leger RJ
    Microbiology (Reading); 2003 Jan; 149(Pt 1):239-47. PubMed ID: 12576597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions.
    Tounou AK; Kooyman C; Douro-Kpindou OK; Poehling HM
    J Invertebr Pathol; 2008 Mar; 97(3):203-10. PubMed ID: 18005982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii.
    Barelli L; Padilla-Guerrero IE; Bidochka MJ
    Fungal Biol; 2011 Nov; 115(11):1174-85. PubMed ID: 22036295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.
    Wei Q; Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.
    Jiang ZY; Ligoxygakis P; Xia YX
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Mortality and Immune Response of Locusta migratoria.
    Jiang W; Peng Y; Ye J; Wen Y; Liu G; Xie J
    Insects; 2019 Dec; 11(1):. PubMed ID: 31906210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection.
    Ouedraogo RM; Goettel MS; Brodeur J
    Oecologia; 2004 Jan; 138(2):312-9. PubMed ID: 14614620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum.
    Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y
    BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in the insect and plant adhesins, Mad1 and Mad2, within the fungal genus metarhizium suggest plant adaptation as an evolutionary force.
    Wyrebek M; Bidochka MJ
    PLoS One; 2013; 8(3):e59357. PubMed ID: 23516629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum.
    Wang C; St Leger RJ
    Eukaryot Cell; 2005 May; 4(5):937-47. PubMed ID: 15879528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum.
    Jin K; Han L; Xia Y
    J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locust can detect β-1, 3-glucan of the fungal pathogen before penetration and defend infection via the Toll signaling pathway.
    Zheng X; Li S; Si Y; Hu J; Xia Y
    Dev Comp Immunol; 2020 May; 106():103636. PubMed ID: 32014469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum.
    Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C
    PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests.
    Ashraf M; Farooq M; Shakeel M; Din N; Hussain S; Saeed N; Shakeel Q; Rajput NA
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28165-28174. PubMed ID: 29019087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology.
    Moreira-Pinto CE; Coelho RR; Leite AGB; Silveira DA; de Souza DA; Lopes RB; Macedo LLP; Silva MCM; Ribeiro TP; Morgante CV; Antonino JD; Grossi-de-Sa MF
    Pest Manag Sci; 2021 Sep; 77(9):4054-4063. PubMed ID: 33896113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.