These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31037730)

  • 1. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing.
    Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A
    Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.
    Bosch JA; Knight S; Kanca O; Zirin J; Yang-Zhou D; Hu Y; Rodiger J; Amador G; Bellen HJ; Perrimon N; Mohr SE
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e112. PubMed ID: 31869524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-/Cas9-Mediated Precise and Efficient Genome Editing in Drosophila.
    Nyberg KG; Carthew RW
    Methods Mol Biol; 2022; 2540():135-156. PubMed ID: 35980576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient CRISPR/Cas9 plasmids for rapid and versatile genome editing in Drosophila.
    Gokcezade J; Sienski G; Duchek P
    G3 (Bethesda); 2014 Sep; 4(11):2279-82. PubMed ID: 25236734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast.
    Zhang XR; He JB; Wang YZ; Du LL
    G3 (Bethesda); 2018 May; 8(6):2067-2077. PubMed ID: 29703785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila Using a Co-CRISPR Strategy.
    Kane NS; Vora M; Varre KJ; Padgett RW
    G3 (Bethesda); 2017 Jan; 7(1):87-93. PubMed ID: 27793971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of extra sequences with I-SceI in combination with CRISPR/Cas9 technique for precise gene editing in Drosophila.
    Zolotarev N; Georgiev P; Maksimenko O
    Biotechniques; 2019 Apr; 66(4):198-201. PubMed ID: 30987444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies].
    Wang J; Huang J; Xu R
    Yi Chuan; 2019 May; 41(5):422-429. PubMed ID: 31106778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 Mediated GFP Knock-in at the MAP1LC3B Locus in 293FT Cells Is Better for Bona Fide Monitoring Cellular Autophagy.
    Wu Z; Zhao J; Qiu M; Mi Z; Meng M; Guo Y; Wang H; Yuan Z
    Biotechnol J; 2018 Nov; 13(11):e1700674. PubMed ID: 29673078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A redesigned CRISPR/Cas9 system for marker-free genome editing in Plasmodium falciparum.
    Lu J; Tong Y; Pan J; Yang Y; Liu Q; Tan X; Zhao S; Qin L; Chen X
    Parasit Vectors; 2016 Apr; 9():198. PubMed ID: 27066899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering.
    Wang J; Torres IM; Shang M; Al-Armanazi J; Dilawar H; Hettiarachchi DU; Paladines-Parrales A; Chambers B; Pottle K; Soman M; Su B; Dunham RA
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129384. PubMed ID: 38224812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 Genome Editing and Rapid Selection of Cell Pools.
    Stoyko D; O T; Hernandez A; Konstantinidou P; Meng Q; Haase AD
    Curr Protoc; 2022 Dec; 2(12):e624. PubMed ID: 36546759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 Genome Editing to Study Nervous System Development in Drosophila.
    Fritsch C; Sprecher SG
    Methods Mol Biol; 2020; 2047():161-189. PubMed ID: 31552655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology.
    Aguilar G; Bauer M; Vigano MA; Guerrero I; Affolter M
    STAR Protoc; 2024 Sep; 5(3):102932. PubMed ID: 38996063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.